IDEAS home Printed from https://ideas.repec.org/r/bla/jamist/v62y2011i2p406-418.html
   My bibliography  Save this item

Sentiment in Twitter events

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Stefan Stieglitz & Christian Meske & Björn Ross & Milad Mirbabaie, 2020. "Going Back in Time to Predict the Future - The Complex Role of the Data Collection Period in Social Media Analytics," Information Systems Frontiers, Springer, vol. 22(2), pages 395-409, April.
  2. Thomas T. Hills & Eugenio Proto & Daniel Sgroi & Chanuki Illushka Seresinhe, 2019. "Historical analysis of national subjective wellbeing using millions of digitized books," Nature Human Behaviour, Nature, vol. 3(12), pages 1271-1275, December.
  3. Mohammad Masoud Rahimi & Elham Naghizade & Mark Stevenson & Stephan Winter, 2023. "SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data," Public Transport, Springer, vol. 15(2), pages 343-376, June.
  4. Hua Bai & Guang Yu, 2016. "A Weibo-based approach to disaster informatics: incidents monitor in post-disaster situation via Weibo text negative sentiment analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1177-1196, September.
  5. Simone Pizzi & Sara Moggi & Fabio Caputo & Pierfelice Rosato, 2021. "Social media as stakeholder engagement tool: CSR communication failure in the oil and gas sector," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(2), pages 849-859, March.
  6. Karin Sim Smith & Richard McCreadie & Craig Macdonald & Iadh Ounis, 2018. "Regional Sentiment Bias in Social Media Reporting During Crises," Information Systems Frontiers, Springer, vol. 20(5), pages 1013-1025, October.
  7. Widmar, Nicole Olynk & Bir, Courtney & Clifford, McKenna & Slipchenko, Natalya, 2020. "Social media sentimentas an additional performance measure? Examples from iconic theme park destinations," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
  8. Hajar Sotudeh & Zeinab Saber & Farzin Ghanbari Aloni & Mahdieh Mirzabeigi & Farshad Khunjush, 2022. "A longitudinal study of the evolution of opinions about open access and its main features: a twitter sentiment analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5587-5611, October.
  9. Heleen Brans & Bert Scholtens, 2020. "Under his thumb the effect of president Donald Trump’s Twitter messages on the US stock market," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-11, March.
  10. David Gunnarsson Lorentzen, 2014. "Webometrics benefitting from web mining? An investigation of methods and applications of two research fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 409-445, May.
  11. Christopher Courtney & Supradeep Dutta & Yong Li, 2017. "Resolving Information Asymmetry: Signaling, Endorsement, and Crowdfunding Success," Entrepreneurship Theory and Practice, , vol. 41(2), pages 265-290, March.
  12. Sanmitra Bhattacharya & Padmini Srinivasan & Phil Polgreen, 2014. "Engagement with Health Agencies on Twitter," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-12, November.
  13. Jagrati Singh & Anil Kumar Singh, 2021. "Semrank: A Semantic Similarity-Based Tweets Ranking Approach," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(3), pages 74-96, July.
  14. Neu, Dean & Saxton, Greg & Rahaman, Abu & Everett, Jeffery, 2019. "Twitter and social accountability: Reactions to the Panama Papers," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 61(C), pages 38-53.
  15. Sashittal, Hemant C. & Hodis, Monica & Sriramachandramurthy, Rajendran, 2015. "Entifying your brand among Twitter-using millennials," Business Horizons, Elsevier, vol. 58(3), pages 325-333.
  16. Daniel E. O'Leary, 2015. "Twitter Mining for Discovery, Prediction and Causality: Applications and Methodologies," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(3), pages 227-247, July.
  17. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
  18. Dhiraj Murthy, 2017. "Comparative Process-oriented Research Using Social Media and Historical Text," Sociological Research Online, , vol. 22(4), pages 3-26, December.
  19. Herbst, Chris M. & Desouza, Kevin C. & Alashri, Saud & Kandala, Srinivasa Srivatsav & Khullar, Mayank & Bajaj, Vikash, 2018. "What Do Parents Value in a Child Care Provider? Evidence from Yelp Consumer Reviews," IZA Discussion Papers 11741, Institute of Labor Economics (IZA).
  20. Ana Condeço-Melhorado & Inmaculada Mohino & Borja Moya-Gómez & Juan Carlos García-Palomares, 2020. "The Rio Olympic Games: A Look into City Dynamics through the Lens of Twitter Data," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
  21. Chien-Chiang Lee & Mei-Ping Chen & Yi-Ting Peng, 2021. "Tourism development and happiness: International evidence," Tourism Economics, , vol. 27(5), pages 1101-1136, August.
  22. Beatriz Barros & Ana Fernández-Zubieta & Raul Fidalgo-Merino & Francisco Triguero, 2018. "Scientific knowledge percolation process and social impact: A case study on the biotechnology and microbiology perceptions on Twitter," Science and Public Policy, Oxford University Press, vol. 45(6), pages 804-814.
  23. Luis-Millán González & José Devís-Devís & Maite Pellicer-Chenoll & Miquel Pans & Alberto Pardo-Ibañez & Xavier García-Massó & Fernanda Peset & Fernanda Garzón-Farinós & Víctor Pérez-Samaniego, 2021. "The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
  24. Benjamin Clapham & Michael Siering & Peter Gomber, 2021. "Popular News Are Relevant News! How Investor Attention Affects Algorithmic Decision-Making and Decision Support in Financial Markets," Information Systems Frontiers, Springer, vol. 23(2), pages 477-494, April.
  25. Wu He & Xin Tian & Andy Hung & Vasudeva Akula & Weidong Zhang, 2018. "Measuring and comparing service quality metrics through social media analytics: a case study," Information Systems and e-Business Management, Springer, vol. 16(3), pages 579-600, August.
  26. Dibya Nandan Mishra & Rajeev Kumar Panda, 2023. "Decoding customer experiences in rail transport service: application of hybrid sentiment analysis," Public Transport, Springer, vol. 15(1), pages 31-60, March.
  27. Sanaz Ghorbanloo & Sajjad Shokouhyar, 2023. "Consumers' attitude footprint on sustainable development in developed and developing countries: a case study in the electronic industry," Operations Management Research, Springer, vol. 16(3), pages 1444-1475, September.
  28. Diana Maynard & Gerhard Gossen & Adam Funk & Marco Fisichella, 2014. "Should I Care about Your Opinion? Detection of Opinion Interestingness and Dynamics in Social Media," Future Internet, MDPI, vol. 6(3), pages 1-25, August.
  29. Liwen Vaughan, 2016. "Uncovering information from social media hyperlinks: An investigation of twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1105-1120, May.
  30. Lipizzi, Carlo & Iandoli, Luca & Ramirez Marquez, José Emmanuel, 2015. "Extracting and evaluating conversational patterns in social media: A socio-semantic analysis of customers’ reactions to the launch of new products using Twitter streams," International Journal of Information Management, Elsevier, vol. 35(4), pages 490-503.
  31. Chae, Bongsug (Kevin), 2015. "Insights from hashtag #supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research," International Journal of Production Economics, Elsevier, vol. 165(C), pages 247-259.
  32. Ping-Yu Hsu & Hong-Tsuen Lei & Shih-Hsiang Huang & Teng Hao Liao & Yao-Chung Lo & Chin-Chun Lo, 2019. "Effects of sentiment on recommendations in social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 253-262, June.
  33. Oleg S. Nagornyy & Olessia Y. Koltsova, 2017. "Mining Media Topics Perceived as Social Problems by Online Audiences: Use of a Data Mining Approach in Sociology," HSE Working papers WP BRP 74/SOC/2017, National Research University Higher School of Economics.
  34. Sandra González-Bailón & Georgios Paltoglou, 2015. "Signals of Public Opinion in Online Communication," The ANNALS of the American Academy of Political and Social Science, , vol. 659(1), pages 95-107, May.
  35. Zavala, Araceli & Ramirez-Marquez, Jose Emmanuel, 2019. "Visual analytics for identifying product disruptions and effects via social media," International Journal of Production Economics, Elsevier, vol. 208(C), pages 544-559.
  36. Rongying Zhao & Mingkun Wei, 2017. "Impact evaluation of open source software: an Altmetrics perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 1017-1033, February.
  37. Hong-Hee Won & Woojae Myung & Gil-Young Song & Won-Hee Lee & Jong-Won Kim & Bernard J Carroll & Doh Kwan Kim, 2013. "Predicting National Suicide Numbers with Social Media Data," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-6, April.
  38. Sahil & Sandeep Kumar Sood, 2021. "Bibliometric monitoring of research performance in ICT-based disaster management literature," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 103-132, February.
  39. Li, Xianghua & Wang, Zhen & Gao, Chao & Shi, Lei, 2017. "Reasoning human emotional responses from large-scale social and public media," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 182-193.
  40. Deepa Mishra & Angappa Gunasekaran & Thanos Papadopoulos & Stephen J. Childe, 2018. "Big Data and supply chain management: a review and bibliometric analysis," Annals of Operations Research, Springer, vol. 270(1), pages 313-336, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.