IDEAS home Printed from https://ideas.repec.org/r/arx/papers/1801.00588.html
   My bibliography  Save this item

Improving Stock Market Prediction via Heterogeneous Information Fusion

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Junran Wu & Ke Xu & Jichang Zhao, 2019. "Online reviews can predict long-term returns of individual stocks," Papers 1905.03189, arXiv.org.
  2. Anna Marszal, 2022. "What news can really tell us? Evidence from a news-based sentiment index for financial markets analysis," NBP Working Papers 349, Narodowy Bank Polski.
  3. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
  4. Mohammad Sahabuddin & Md. Aminul Islam & Mosab I. Tabash & Suhaib Anagreh & Rozina Akter & Md. Mizanur Rahman, 2022. "Co-Movement, Portfolio Diversification, Investors’ Behavior and Psychology: Evidence from Developed and Emerging Countries’ Stock Markets," JRFM, MDPI, vol. 15(8), pages 1-15, July.
  5. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
  6. Cristescu Marian Pompiliu & Nerişanu Raluca Andreea & Mara Dumitru Alexandru, 2022. "Using Data Mining in the Sentiment Analysis Process on the Financial Market," Journal of Social and Economic Statistics, Sciendo, vol. 11(1-2), pages 36-58, December.
  7. Zhou, Zhongbao & Gao, Meng & Xiao, Helu & Wang, Rui & Liu, Wenbin, 2021. "Big data and portfolio optimization: A novel approach integrating DEA with multiple data sources," Omega, Elsevier, vol. 104(C).
  8. Shengkun Wang & Taoran Ji & Jianfeng He & Mariam Almutairi & Dan Wang & Linhan Wang & Min Zhang & Chang-Tien Lu, 2024. "AMA-LSTM: Pioneering Robust and Fair Financial Audio Analysis for Stock Volatility Prediction," Papers 2407.18324, arXiv.org.
  9. Xi Zhang & Yixuan Li & Senzhang Wang & Binxing Fang & Philip S. Yu, 2018. "Enhancing Stock Market Prediction with Extended Coupled Hidden Markov Model over Multi-Sourced Data," Papers 1809.00306, arXiv.org.
  10. Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  11. Tasnim M. A. Zayet & Maizatul Akmar Ismail & Kasturi Dewi Varathan & Rafidah M. D. Noor & Hui Na Chua & Angela Lee & Yeh Ching Low & Sheena Kaur Jaswant Singh, 2021. "Investigating transportation research based on social media analysis: a systematic mapping review," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6383-6421, August.
  12. Yihang Fu & Mingyu Zhou & Luyao Zhang, 2024. "DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting," Papers 2405.00522, arXiv.org.
  13. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
  14. Felix Drinkall & Janet B. Pierrehumbert & Stefan Zohren, 2024. "Forecasting Credit Ratings: A Case Study where Traditional Methods Outperform Generative LLMs," Papers 2407.17624, arXiv.org, revised Jan 2025.
  15. Rosdyana Mangir Irawan Kusuma & Trang-Thi Ho & Wei-Chun Kao & Yu-Yen Ou & Kai-Lung Hua, 2019. "Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market," Papers 1903.12258, arXiv.org.
  16. Qiao Zhou & Ningning Liu, 2020. "A Stock Prediction Model Based on DCNN," Papers 2009.03239, arXiv.org.
  17. María José Ayala & Nicolás Gonzálvez-Gallego & Rocío Arteaga-Sánchez, 2024. "Google search volume index and investor attention in stock market: a systematic review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
  18. Ashwini Saini & Anoop Sharma, 2022. "Predicting the Unpredictable: An Application of Machine Learning Algorithms in Indian Stock Market," Annals of Data Science, Springer, vol. 9(4), pages 791-799, August.
  19. Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
  20. Jinan Zou & Qingying Zhao & Yang Jiao & Haiyao Cao & Yanxi Liu & Qingsen Yan & Ehsan Abbasnejad & Lingqiao Liu & Javen Qinfeng Shi, 2022. "Stock Market Prediction via Deep Learning Techniques: A Survey," Papers 2212.12717, arXiv.org, revised Feb 2023.
  21. Amit Milstein & Haoran Deng & Guy Revach & Hai Morgenstern & Nir Shlezinger, 2022. "Neural Augmented Kalman Filtering with Bollinger Bands for Pairs Trading," Papers 2210.15448, arXiv.org, revised Sep 2023.
  22. Marian Pompiliu Cristescu & Raluca Andreea Nerisanu & Dumitru Alexandru Mara & Simona-Vasilica Oprea, 2022. "Using Market News Sentiment Analysis for Stock Market Prediction," Mathematics, MDPI, vol. 10(22), pages 1-12, November.
  23. Wen, Danyan & Ma, Chaoqun & Wang, Gang-Jin & Wang, Senzhang, 2018. "Investigating the features of pairs trading strategy: A network perspective on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 903-918.
  24. Linyi Yang & Yingpeng Ma & Yue Zhang, 2023. "Measuring Consistency in Text-based Financial Forecasting Models," Papers 2305.08524, arXiv.org, revised Jun 2023.
  25. Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
  26. Karolina Sowinska & Pranava Madhyastha, 2020. "A Tweet-based Dataset for Company-Level Stock Return Prediction," Papers 2006.09723, arXiv.org.
  27. Yu Zhao & Huaming Du & Ying Liu & Shaopeng Wei & Xingyan Chen & Fuzhen Zhuang & Qing Li & Ji Liu & Gang Kou, 2022. "Stock Movement Prediction Based on Bi-typed Hybrid-relational Market Knowledge Graph via Dual Attention Networks," Papers 2201.04965, arXiv.org, revised Jan 2022.
  28. Francisco de Arriba-P'erez & Silvia Garc'ia-M'endez & Jos'e A. Regueiro-Janeiro & Francisco J. Gonz'alez-Casta~no, 2024. "Detection of financial opportunities in micro-blogging data with a stacked classification system," Papers 2404.07224, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.