IDEAS home Printed from https://ideas.repec.org/r/anr/reveco/v8y2016p81-110.html
   My bibliography  Save this item

Forecasting in Economics and Finance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," CEPR Discussion Papers 15418, C.E.P.R. Discussion Papers.
  2. Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
  3. Qin Zhang & He Ni & Hao Xu, 2023. "Forecasting models for the Chinese macroeconomy in a data‐rich environment: Evidence from large dimensional approximate factor models with mixed‐frequency data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 719-767, March.
  4. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
  5. Carstensen, Kai & Bachmann, Rüdiger & Schneider, Martin & Lautenbacher, Stefan, 2018. "Uncertainty is Change," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181572, Verein für Socialpolitik / German Economic Association.
  6. Gabe J. Bondt, 2019. "A PMI-Based Real GDP Tracker for the Euro Area," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 15(2), pages 147-170, December.
  7. Jiun-Hua Su, 2019. "Model Selection in Utility-Maximizing Binary Prediction," Papers 1903.00716, arXiv.org, revised Jul 2020.
  8. Moramarco, Graziano, 2024. "Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States," International Journal of Forecasting, Elsevier, vol. 40(2), pages 777-795.
  9. Anwen Yin, 2022. "Does the kitchen‐sink model work forecasting the equity premium?," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 223-247, March.
  10. David I. Harvey & Stephen J. Leybourne & Yang Zu, 2024. "Tests for equal forecast accuracy under heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 850-869, August.
  11. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
  12. Algieri, Bernardina & Iania, Leonardo & Leccadito, Arturo & Meloni, Giulia, 2024. "Message in a bottle: Forecasting wine prices," Journal of Wine Economics, Cambridge University Press, vol. 19(1), pages 64-91, February.
  13. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "Econometrics of machine learning methods in economic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273, Edward Elgar Publishing.
  14. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
  15. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
  16. Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2020. "Nonlinear forecast combinations: An example using euro-area real GDP growth," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 579-589.
  17. Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021. "Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors," Energy Economics, Elsevier, vol. 96(C).
  18. Timo Dimitriadis & Andrew J. Patton & Patrick W. Schmidt, 2019. "Testing Forecast Rationality for Measures of Central Tendency," Papers 1910.12545, arXiv.org, revised Jul 2024.
  19. Qiu, Yue & Zheng, Yuchen, 2023. "Improving box office projections through sentiment analysis: Insights from regularization-based forecast combinations," Economic Modelling, Elsevier, vol. 125(C).
  20. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
  21. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
  22. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
  23. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
  24. Marcin Dec, 2021. "From point through density valuation to individual risk assessment in the discounted cash flows method," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5621-5635, October.
  25. Li, Jiang-Cheng & Leng, Na & Zhong, Guang-Yan & Wei, Yu & Peng, Jia-Sheng, 2020. "Safe marginal time of crude oil price via escape problem of econophysics," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
  26. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
  27. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
  28. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
  29. Dungey, Mardi & Islam, Raisul & Volkov, Vladimir, 2020. "Crisis transmission: Visualizing vulnerability," Pacific-Basin Finance Journal, Elsevier, vol. 59(C).
  30. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
  31. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
  32. Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
  33. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
  34. Rahul Deb & Mallesh M. Pai & Maher Said, 2018. "Evaluating Strategic Forecasters," American Economic Review, American Economic Association, vol. 108(10), pages 3057-3103, October.
  35. Hambuckers, J. & Ulm, M., 2023. "On the role of interest rate differentials in the dynamic asymmetry of exchange rates," Economic Modelling, Elsevier, vol. 129(C).
  36. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
  37. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
  38. Kothari, Pratik & O’Doherty, Michael S., 2023. "Job postings and aggregate stock returns," Journal of Financial Markets, Elsevier, vol. 64(C).
  39. Ari Hyytinen & Petri Rouvinen & Mika Pajarinen & Joosua Virtanen, 2023. "Ex Ante Predictability of Rapid Growth: A Design Science Approach," Entrepreneurship Theory and Practice, , vol. 47(6), pages 2465-2493, November.
  40. Islam, Raisul & Volkov, Vladimir, 2020. "Calm before the storm: an early warning approach before and during the COVID-19 crisis," Working Papers 2020-09, University of Tasmania, Tasmanian School of Business and Economics.
  41. Procasky, William J. & Yin, Anwen, 2023. "The impact of COVID-19 on the relative market efficiency and forecasting ability of credit derivative and equity markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
  42. David A. Mascio & Frank J. Fabozzi & J. Kenton Zumwalt, 2021. "Market timing using combined forecasts and machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 1-16, January.
  43. Elliot Beck & Damian Kozbur & Michael Wolf, 2023. "Hedging Forecast Combinations With an Application to the Random Forest," Papers 2308.15384, arXiv.org, revised Aug 2023.
  44. Dewangan, Chaman Lal & Singh, S.N. & Chakrabarti, S., 2020. "Combining forecasts of day-ahead solar power," Energy, Elsevier, vol. 202(C).
  45. Su, Jiun-Hua, 2021. "Model selection in utility-maximizing binary prediction," Journal of Econometrics, Elsevier, vol. 223(1), pages 96-124.
  46. Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
  47. Kuangyu Wen, 2023. "A semiparametric spatio‐temporal model of crop yield trend and its implication to insurance rating," Agricultural Economics, International Association of Agricultural Economists, vol. 54(5), pages 662-673, September.
  48. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
  49. Chen, Yi-Ting & Liu, Chu-An, 2023. "Model averaging for asymptotically optimal combined forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
  50. Kaiji Motegi & Xiaojing Cai & Shigeyuki Hamori & Haifeng Xu, 2020. "Moving average threshold heterogeneous autoregressive (MAT‐HAR) models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1035-1042, November.
  51. Graziano Moramarco, 2021. "Regime-Switching Density Forecasts Using Economists' Scenarios," Papers 2110.13761, arXiv.org, revised Feb 2024.
  52. Rui Fan & Stephen J. Taylor & Matteo Sandri, 2018. "Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 83-103, January.
  53. Joseph Agyapong, 2021. "Application of Taylor Rule Fundamentals in Forecasting Exchange Rates," Economies, MDPI, vol. 9(2), pages 1-27, June.
  54. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
  55. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
  56. Adalberto Ospino Castro & Carlos Robles-Algar n & Rafael Pe a Gallardo, 2019. "Analysis of Energy Management and Financial Planning in the Implementation of PV Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 1-11.
  57. Marta Boczoń & Jean-François Richard, 2020. "Balanced Growth Approach to Tracking Recessions," Econometrics, MDPI, vol. 8(2), pages 1-35, April.
  58. Anna Borucka, 2023. "Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
  59. Anwen Yin, 2021. "Forecasting the Market Equity Premium: Does Nonlinearity Matter?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(5), pages 1-9, May.
  60. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
  61. Iania, Leonardo & Algieri, Bernardina & Leccadito, Arturo, 2022. "Forecasting total energy’s CO2 emissions," LIDAM Discussion Papers LFIN 2022003, Université catholique de Louvain, Louvain Finance (LFIN).
  62. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
  63. Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
  64. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
  65. Zhu, Yinchu & Timmermann, Allan, 2022. "Conditional rotation between forecasting models," Journal of Econometrics, Elsevier, vol. 231(2), pages 329-347.
  66. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
  67. Alessandro Casini, 2018. "Tests for Forecast Instability and Forecast Failure under a Continuous Record Asymptotic Framework," Papers 1803.10883, arXiv.org, revised Dec 2018.
  68. Kieran Mc Morrow & Werner Roeger & Valerie Vandermeulen, 2017. "Evaluating Medium Term Forecasting Methods and their Implications for EU Output Gap Calculations," European Economy - Discussion Papers 070, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
  69. James Lightwood & Steve Anderson & Stanton A Glantz, 2020. "Predictive validation and forecasts of short-term changes in healthcare expenditure associated with changes in smoking behavior in the United States," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
  70. Juan R. Hernández, 2024. "Covered interest parity: a forecasting approach to estimate the neutral band," BIS Working Papers 1206, Bank for International Settlements.
  71. Marcin Dec, 2019. "From point through density valuation to individual risk assessment in the discounted cash flows method," GRAPE Working Papers 35, GRAPE Group for Research in Applied Economics.
  72. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
  73. Timmermann, Allan & Zhu, Yinchu, 2021. "Conditional Rotation Between Forecasting Models," CEPR Discussion Papers 15917, C.E.P.R. Discussion Papers.
  74. Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
  75. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
  76. Niu, Zibo & Wang, Chenlu & Zhang, Hongwei, 2023. "Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models," International Review of Financial Analysis, Elsevier, vol. 89(C).
  77. Arai, Natsuki, 2020. "Investigating the inefficiency of the CBO’s budgetary projections," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1290-1300.
  78. William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.
  79. Rebonato, Riccardo & Ronzani, Riccardo, 2021. "Is convexity efficiently priced? Evidence from international swap markets," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 392-413.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.