IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/6085.html
   My bibliography  Save this paper

Application of a simple nonparametric conditional quantile function estimator in unemployment duration analysis

Author

Listed:
  • Wilke, Ralf A.
  • Wichert, Laura

Abstract

We consider an extension of conventional univariate Kaplan-Meier type estimators for the hazard rate and the survivor function to multivariate censored data with a censored random regressor. It is an Akritas (1994) type estimator which adapts the nonparametric conditional hazard rate estimator of Beran (1981) to more typical data situations in applied analysis. We show with simulations that the estimator has nice finite sample properties and our implementation appears to be fast. As an application we estimate nonparametric conditional quantile functions with German administrative unemployment duration data.

Suggested Citation

  • Wilke, Ralf A. & Wichert, Laura, 2005. "Application of a simple nonparametric conditional quantile function estimator in unemployment duration analysis," ZEW Discussion Papers 05-67 [rev.], ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:6085
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/24617/1/dp0567.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Härdle, Wolfgang & Linton, O., 1995. "Nonparametric Regression," SFB 373 Discussion Papers 1995,29, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Martin Biewen & Ralf Wilke, 2005. "Unemployment duration and the length of entitlement periods for unemployment benefits: do the IAB employment subsample and the German Socio-Economic Panel yield the same results?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 89(2), pages 209-236, June.
    3. Yannis Bilias & Roger Koenker, 2001. "Quantile regression for duration data: A reappraisal of the Pennsylvania Reemployment Bonus Experiments," Empirical Economics, Springer, vol. 26(1), pages 199-220.
    4. Bernd Fitzenberger & Ralf Wilke, 2006. "Using quantile regression for duration analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.
    5. Fitzenberger, Bernd & Wilke, Ralf A., 2007. "New insights on unemployment duration and post unemployment earnings in Germany: censored Box-Cox quantile regression at work," ZEW Discussion Papers 07-007, ZEW - Leibniz Centre for European Economic Research.
    6. Koenker R. & Geling O., 2001. "Reappraising Medfly Longevity: A Quantile Regression Survival Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 458-468, June.
    7. Fitzenberger Bernd & Wilke Ralf A., 2010. "Unemployment Durations in West Germany Before and After the Reform of the Unemployment Compensation System during the 1980s," German Economic Review, De Gruyter, vol. 11(3), pages 336-366, August.
    8. Lechner, Michael, 1997. "Eine empirische Analyse der Geburtenentwicklung in den neuen Bundesländern," Discussion Papers 551, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
    9. Pedro Portugal & José A. F. Machado, 2002. "Quantile Regression Methods: na Application to U.S. Unemployment Duration," Working Papers w200201, Banco de Portugal, Economics and Research Department.
    10. Dabrowska, D. M., 1995. "Nonparametric Regression with Censored Covariates," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 253-283, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arntz, Melanie & Wilke, Ralf A. & Winterhager, Henrik, 2006. "Regionenmatching im Rahmen der Evaluation der Experimentierungsklausel des § 6c SGB II: Methodische Vorgehensweise und Ergebnisse," ZEW Discussion Papers 06-061, ZEW - Leibniz Centre for European Economic Research.
    2. Fitzenberger, Bernd & Wilke, Ralf A., 2007. "New insights on unemployment duration and post unemployment earnings in Germany: censored Box-Cox quantile regression at work," ZEW Discussion Papers 07-007, ZEW - Leibniz Centre for European Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:iab:iabfme:200709(en is not listed on IDEAS
    2. Wichert, Laura & Wilke, Ralf A., 2007. "Simple nonparametric estimators for unemployment duration analysis," FDZ Methodenreport 200709_en, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    3. Bernd Fitzenberger & Ralf Wilke, 2006. "Using quantile regression for duration analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.
    4. Melanie Arntz & Ralf Wilke, 2009. "Unemployment Duration in Germany: Individual and Regional Determinants of Local Job Finding, Migration and Subsidized Employment," Regional Studies, Taylor & Francis Journals, vol. 43(1), pages 43-61.
    5. Chen, Songnian, 2019. "Quantile regression for duration models with time-varying regressors," Journal of Econometrics, Elsevier, vol. 209(1), pages 1-17.
    6. Kyyrä, Tomi & Wilke, Ralf A., 2006. "Reduction in the Long-Term Unemployment of the Elderly: A Success Story from Finland Revised," Discussion Papers 396, VATT Institute for Economic Research.
    7. Carlos Alberto Foronda Rojas & Andrea Alcaráz, 2015. "Estimation and characteristics of unemployment duration in Bolivia," Investigación & Desarrollo, Universidad Privada Boliviana, vol. 2(1), pages 15-40.
    8. Bernd Fitzenberger & Ralf A. Wilke, 2010. "New Insights into Unemployment Duration and Post Unemployment Earnings in Germany," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(6), pages 794-826, December.
    9. Boockmann, Bernhard & Steffes, Susanne, 2007. "Seniority and Job Stability: A Quantile Regression Approach Using Matched Employer-Employee Data," ZEW Discussion Papers 07-014, ZEW - Leibniz Centre for European Economic Research.
    10. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Xavier D’Haultfoeuille & Pauline Givord, 2014. "La régression quantile en pratique," Économie et Statistique, Programme National Persée, vol. 471(1), pages 85-111.
    12. Joerg Heining & Joerg Lingens, 2000. "Social Interaction in Regional Labour Markets," Regional and Urban Modeling 283600034, EcoMod.
    13. Rahul Kapoor & Ron Adner, 2012. "What Firms Make vs. What They Know: How Firms' Production and Knowledge Boundaries Affect Competitive Advantage in the Face of Technological Change," Organization Science, INFORMS, vol. 23(5), pages 1227-1248, October.
    14. Arthur Lewbel & Oliver Linton, 2002. "Nonparametric Censored and Truncated Regression," Econometrica, Econometric Society, vol. 70(2), pages 765-779, March.
    15. Centeno, Mario & Novo, Alvaro A., 2006. "The impact of unemployment insurance generosity on match quality distribution," Economics Letters, Elsevier, vol. 93(2), pages 235-241, November.
    16. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    17. Elke Lüdemann & Ralf Wilke & Xuan Zhang, 2006. "Censored quantile regressions and the length of unemployment periods in West Germany," Empirical Economics, Springer, vol. 31(4), pages 1003-1024, November.
    18. Bachmann, Ronald & Schaffner, Sandra, 2009. "Biases in the measurement of labour market dynamics," Technical Reports 2009,12, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Bijwaard, G.E., 2002. "Instrumental variable estimation for duration data," Econometric Institute Research Papers EI 2002-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Bijwaard, G.E., 2007. "Instrumental variable estimation of treatment effects for duration outcomes," Econometric Institute Research Papers EI 2007-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    21. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2016. "Semiparametric Copula Quantile Regression for Complete or Censored Data," LIDAM Discussion Papers ISBA 2016009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Keywords

    nonparametric estimation; censoring; unemployment duration;
    All these keywords.

    JEL classification:

    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:6085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.