IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v33y2009i10p1739-1756.html
   My bibliography  Save this article

Learning games

Author

Listed:
  • Hanaki, Nobuyuki
  • Ishikawa, Ryuichiro
  • Akiyama, Eizo

Abstract

This paper presents a model of learning about a game. Players initially have little knowledge about the game. Through playing the same game repeatedly, each player not only learns which action to choose but also constructs a personal view of the game. The model is studied using a hybrid payoff matrix of the prisoner's dilemma and coordination games. Results of computer simulations show that (1) when all the players are slow at learning the game, they have only a partial understanding of the game, but might enjoy higher payoffs than in cases with full or no understanding of the game; (2) when one player is quick in learning the game, that player obtains a higher payoff than the others. However, all can receive lower payoffs than in the case in which all players are slow learners.

Suggested Citation

  • Hanaki, Nobuyuki & Ishikawa, Ryuichiro & Akiyama, Eizo, 2009. "Learning games," Journal of Economic Dynamics and Control, Elsevier, vol. 33(10), pages 1739-1756, October.
  • Handle: RePEc:eee:dyncon:v:33:y:2009:i:10:p:1739-1756
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(09)00074-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanaki, Nobuyuki & Sethi, Rajiv & Erev, Ido & Peterhansl, Alexander, 2005. "Learning strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 56(4), pages 523-542, April.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    4. Crawford, Vincent P, 1995. "Adaptive Dynamics in Coordination Games," Econometrica, Econometric Society, vol. 63(1), pages 103-143, January.
    5. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    6. Mookherjee, Dilip & Sopher, Barry, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Games and Economic Behavior, Elsevier, vol. 19(1), pages 97-132, April.
    7. Josephson, Jens, 2008. "A numerical analysis of the evolutionary stability of learning rules," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1569-1599, May.
    8. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    9. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    10. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    11. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    12. Oechssler, Jorg & Schipper, Burkhard, 2003. "Can you guess the game you are playing?," Games and Economic Behavior, Elsevier, vol. 43(1), pages 137-152, April.
    13. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    14. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    15. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    16. Arifovic, Jasmina & McKelvey, Richard D. & Pevnitskaya, Svetlana, 2006. "An initial implementation of the Turing tournament to learning in repeated two-person games," Games and Economic Behavior, Elsevier, vol. 57(1), pages 93-122, October.
    17. Kaneko, Mamoru & Kline, J. Jude, 2008. "Inductive game theory: A basic scenario," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1332-1363, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Berg & Ulrich Hoffrage & Katarzyna Abramczuk, 2010. "Fast Acceptance by Common Experience - FACE-recognition in Schelling's model of neighborhood segregation," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 5(5), pages 391-410, August.
    2. Ying Tang & Andrea Moro & Sandro Sozzo & Zhiyong Li, 2018. "Modelling trust evolution within small business lending relationships," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-18, December.
    3. Mamoru Kaneko, 2013. "Symposium: logic and economics—interactions between subjective thinking and objective worlds," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(1), pages 1-8, May.
    4. Efe Postalci, 2010. "Learning by observing," Working Papers 1007, Izmir University of Economics.
    5. repec:cup:judgdm:v:5:y:2010:i:5:p:391-410 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.
    2. Nobuyuki Hanaki, 2007. "Individual and Social Learning," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 421-421, May.
    3. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    4. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    5. Pangallo, Marco & Sanders, James B.T. & Galla, Tobias & Farmer, J. Doyne, 2022. "Towards a taxonomy of learning dynamics in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 1-21.
    6. Hanaki, Nobuyuki & Sethi, Rajiv & Erev, Ido & Peterhansl, Alexander, 2005. "Learning strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 56(4), pages 523-542, April.
    7. Jacob K. Goeree & Charles A. Holt, 2001. "Ten Little Treasures of Game Theory and Ten Intuitive Contradictions," American Economic Review, American Economic Association, vol. 91(5), pages 1402-1422, December.
    8. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.
    9. Wolf Ze'ev Ehrblatt & Kyle Hyndman & Erkut Y. ÄOzbay & Andrew Schotter, 2006. "Convergence: An Experimental Study," Levine's Working Paper Archive 122247000000001148, David K. Levine.
    10. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    11. Dziubiński, Marcin & Roy, Jaideep, 2012. "Popularity of reinforcement-based and belief-based learning models: An evolutionary approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 433-454.
    12. Mauersberger, Felix, 2019. "Thompson Sampling: Endogenously Random Behavior in Games and Markets," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203600, Verein für Socialpolitik / German Economic Association.
    13. Shafran, Aric P., 2012. "Learning in games with risky payoffs," Games and Economic Behavior, Elsevier, vol. 75(1), pages 354-371.
    14. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    15. Mengel, Friederike & Orlandi, Ludovica & Weidenholzer, Simon, 2022. "Match length realization and cooperation in indefinitely repeated games," Journal of Economic Theory, Elsevier, vol. 200(C).
    16. Atanasios Mitropoulos, 2001. "Learning Under Little Information: An Experiment on Mutual Fate Control," Game Theory and Information 0110003, University Library of Munich, Germany.
    17. Teck H. Ho & Xin Wang & Colin F. Camerer, 2008. "Individual Differences in EWA Learning with Partial Payoff Information," Economic Journal, Royal Economic Society, vol. 118(525), pages 37-59, January.
    18. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    19. Andreas Nicklisch, 2011. "Learning strategic environments: an experimental study of strategy formation and transfer," Theory and Decision, Springer, vol. 71(4), pages 539-558, October.
    20. Battalio,R. & Samuelson,L. & Huyck,J. van, 1998. "Risk dominance, payoff dominance and probabilistic choice learning," Working papers 2, Wisconsin Madison - Social Systems.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:33:y:2009:i:10:p:1739-1756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.