IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2016-017.html
   My bibliography  Save this paper

Calculating joint confidence bands for impulse response functions using highest density regions

Author

Listed:
  • Lütkepohl, Helmut
  • Staszewska-Bystrova, Anna
  • Winker, Peter

Abstract

This paper proposes a new non-parametric method of constructing joint con- dence bands for impulse response functions of vector autoregressive models. The estimation uncertainty is captured by means of bootstrapping and the highest density region (HDR) approach is used to construct the bands. A Monte Carlo comparison of the HDR bands with existing alternatives shows that the former are competitive with the bootstrap-based Bonferroni and Wald con dence regions. The relative tightness of the HDR bands matched with their good coverage properties makes them attractive for applications. An application to corporate bond spreads for Germany highlights the potential for empirical work.

Suggested Citation

  • Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2016. "Calculating joint confidence bands for impulse response functions using highest density regions," SFB 649 Discussion Papers 2016-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2016-017
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/146186/1/857199919.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    2. Anna Staszewska-Bystrova & Peter Winker, 2014. "Measuring Forecast Uncertainty of Corporate Bond Spreads by Bonferroni-Type Prediction Bands," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(2), pages 89-104, June.
    3. repec:diw:diwwpp:dp1354 is not listed on IDEAS
    4. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    5. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," Discussion Papers of DIW Berlin 1354, DIW Berlin, German Institute for Economic Research.
    6. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    7. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    8. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2015. "Confidence Bands for Impulse Responses: Bonferroni vs. Wald," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(6), pages 800-821, December.
    9. Staszewska-Bystrova Anna, 2013. "Modified Scheffé’s Prediction Bands," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(5-6), pages 680-690, October.
    10. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    11. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    12. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2014. "Confidence bands for impulse responses: Bonferroni versus Wald," SFB 649 Discussion Papers 2014-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    2. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
    3. Kilian, Lutz & Inoue, Atsushi, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," CEPR Discussion Papers 15545, C.E.P.R. Discussion Papers.
    4. Jonas E. Arias & Juan F. Rubio-Ramirez & Daniel F. Waggoner, 2020. "Uniform Priors for Impulse Responses," Working Papers 22-30, Federal Reserve Bank of Philadelphia.
    5. Mardi Dungey & Denise R. Osborn, 2020. "The Gains from Catch‐up for China and the USA: An Empirical Framework," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 350-365, September.
    6. Inoue, Atsushi & Kilian, Lutz, 2022. "Joint Bayesian inference about impulse responses in VAR models," Journal of Econometrics, Elsevier, vol. 231(2), pages 457-476.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:diw:diwwpp:dp1762 is not listed on IDEAS
    2. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
    3. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2020. "Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 5-32, March.
    4. Anna Staszewska-Bystrova & Peter Winker, 2014. "Measuring Forecast Uncertainty of Corporate Bond Spreads by Bonferroni-Type Prediction Bands," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(2), pages 89-104, June.
    5. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    6. repec:diw:diwwpp:dp1642 is not listed on IDEAS
    7. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2018. "Estimation of structural impulse responses: short-run versus long-run identifying restrictions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 229-244, April.
    8. Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
    9. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    10. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
    11. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
    12. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    13. Grabowski Daniel & Staszewska-Bystrova Anna & Winker Peter, 2017. "Generating prediction bands for path forecasts from SETAR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(5), pages 1-18, December.
    14. Stefan Bruder, 2014. "Comparing several methods to compute joint prediction regions for path forecasts generated by vector autoregressions," ECON - Working Papers 181, Department of Economics - University of Zurich, revised Dec 2015.
    15. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    16. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    17. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    18. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    19. repec:diw:diwwpp:dp1913 is not listed on IDEAS
    20. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    21. Martin Bruns & Helmut Lütkepohl, 2023. "An Alternative Bootstrap for Proxy Vector Autoregressions," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1857-1882, December.
    22. Pan-Jun Kim & Nathan D Price, 2011. "Genetic Co-Occurrence Network across Sequenced Microbes," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-9, December.
    23. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.

    More about this item

    Keywords

    impulse responses; joint confidence bands; highest density region; vector autoregressive process;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2016-017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.