The bayesian additive classification tree applied to credit risk modelling
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Härdle, Wolfgang Karl & Moro, Rouslan A. & Schäfer, Dorothea, 2007.
"Estimating probabilities of default with support vector machines,"
Discussion Paper Series 2: Banking and Financial Studies
2007,18, Deutsche Bundesbank.
- Härdle, Wolfgang Karl & Moro, Rouslan A. & Schäfer, Dorothea, 2007. "Estimating probabilities of default with support vector machines," SFB 649 Discussion Papers 2007-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2007.
"The Default Risk of Firms Examined with Smooth Support Vector Machines,"
Discussion Papers of DIW Berlin
757, DIW Berlin, German Institute for Economic Research.
- Härdle, Wolfgang Karl & Lee, Yuh-Jye & Schäfer, Dorothea & Yeh, Yi-Ren, 2008. "The default risk of firms examined with smooth support vector machines," SFB 649 Discussion Papers 2008-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nehrebecka Natalia, 2018. "Predicting the Default Risk of Companies. Comparison of Credit Scoring Models: Logit Vs Support Vector Machines," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 22(2), pages 54-73, June.
- Natalia Nehrebecka, 2021. "Internal Credit Risk Models and Digital Transformation: What to Prepare for? An Application to Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 3), pages 719-736.
- Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
- repec:hum:wpaper:sfb649dp2008-005 is not listed on IDEAS
- Tyler Pike & Horacio Sapriza & Tom Zimmermann, 2019. "Bottom-up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults using Machine Learning," Finance and Economics Discussion Series 2019-070, Board of Governors of the Federal Reserve System (U.S.).
- Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2007.
"The Default Risk of Firms Examined with Smooth Support Vector Machines,"
Discussion Papers of DIW Berlin
757, DIW Berlin, German Institute for Economic Research.
- Härdle, Wolfgang Karl & Lee, Yuh-Jye & Schäfer, Dorothea & Yeh, Yi-Ren, 2008. "The default risk of firms examined with smooth support vector machines," SFB 649 Discussion Papers 2008-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Jan-Henning Trustorff & Paul Konrad & Jens Leker, 2011. "Credit risk prediction using support vector machines," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 565-581, May.
- Jakubik, Petr & Moinescu, Bogdan, 2015. "Assessing optimal credit growth for an emerging banking system," Economic Systems, Elsevier, vol. 39(4), pages 577-591.
- repec:hum:wpaper:sfb649dp2008-003 is not listed on IDEAS
More about this item
Keywords
Classification and Regression Tree; Financial Ratio; Misclassification Rate; Accuracy Ratio;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2008-01-12 (Computational Economics)
- NEP-DCM-2008-01-12 (Discrete Choice Models)
- NEP-ORE-2008-01-12 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2008-003. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.