IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2008-003.html
   My bibliography  Save this paper

The bayesian additive classification tree applied to credit risk modelling

Author

Listed:
  • Zhang, Junni L.
  • Härdle, Wolfgang Karl

Abstract

We propose a new nonlinear classification method based on a Bayesian sum-of-trees model, the Bayesian Additive Classification Tree (BACT), which extends the Bayesian Additive Regression Tree (BART) method into the classification context. Like BART, the BACT is a Bayesian nonparametric additive model specified by a prior and a likelihood in which the additive components are trees, and it is fitted by an iterative MCMC algorithm. Each of the trees learns a different part of the underlying function relating the dependent variable to the input variable, but the sum of the trees offers a flexible and robust model. Through several benchmark examples, we show that the BACT has excellent performance. This practical example is very important for banks to construct their risk profile and operate successfully. We use the German Creditreform database and classify the solvency status of German firms based on financial statement information. We show that the BACT outperforms the logit model, CART and the Support Vector Machine in identifying insolvent firms.

Suggested Citation

  • Zhang, Junni L. & Härdle, Wolfgang Karl, 2008. "The bayesian additive classification tree applied to credit risk modelling," SFB 649 Discussion Papers 2008-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2008-003
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25245/1/558748309.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Härdle, Wolfgang Karl & Moro, Rouslan A. & Schäfer, Dorothea, 2007. "Estimating probabilities of default with support vector machines," Discussion Paper Series 2: Banking and Financial Studies 2007,18, Deutsche Bundesbank.
    2. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2007. "The Default Risk of Firms Examined with Smooth Support Vector Machines," Discussion Papers of DIW Berlin 757, DIW Berlin, German Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nehrebecka Natalia, 2018. "Predicting the Default Risk of Companies. Comparison of Credit Scoring Models: Logit Vs Support Vector Machines," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 22(2), pages 54-73, June.
    2. Natalia Nehrebecka, 2021. "Internal Credit Risk Models and Digital Transformation: What to Prepare for? An Application to Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 3), pages 719-736.
    3. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    4. repec:hum:wpaper:sfb649dp2008-005 is not listed on IDEAS
    5. Tyler Pike & Horacio Sapriza & Tom Zimmermann, 2019. "Bottom-up Leading Macroeconomic Indicators: An Application to Non-Financial Corporate Defaults using Machine Learning," Finance and Economics Discussion Series 2019-070, Board of Governors of the Federal Reserve System (U.S.).
    6. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2007. "The Default Risk of Firms Examined with Smooth Support Vector Machines," Discussion Papers of DIW Berlin 757, DIW Berlin, German Institute for Economic Research.
    7. Jan-Henning Trustorff & Paul Konrad & Jens Leker, 2011. "Credit risk prediction using support vector machines," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 565-581, May.
    8. Jakubik, Petr & Moinescu, Bogdan, 2015. "Assessing optimal credit growth for an emerging banking system," Economic Systems, Elsevier, vol. 39(4), pages 577-591.
    9. repec:hum:wpaper:sfb649dp2008-003 is not listed on IDEAS

    More about this item

    Keywords

    Classification and Regression Tree; Financial Ratio; Misclassification Rate; Accuracy Ratio;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2008-003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.