IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/199916.html
   My bibliography  Save this paper

Modality, runs, strings and wavelets

Author

Listed:
  • Davies, P. Laurie
  • Kovac, A.

Abstract

The paper considers the problem of non-parametric regression with emphasis on controlling the number of local extrema. Two methods, the run method and the taut string-wavelet method, are introduced and analysed on standard test beds. It is shown that the number and location of local extreme values are consistently estimated. Rates of convergence are proved for both methods. The run method has a slow rate but can withstand blocks as well as a high proportion of isolated outliers. The rate of convergence of the taut string-wavelet method is almost optimal and the method is extremely sensitive being able to detect very low power peaks. Section 1 contains a short introduction with special reference to modality. The run method is described in Section 2 and the taut string-wavelet method in Section 3. Low power peaks are considered in Section 4. Section 5 contains a short conclusion and the proofs are given in Section 6.

Suggested Citation

  • Davies, P. Laurie & Kovac, A., 1999. "Modality, runs, strings and wavelets," Technical Reports 1999,16, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:199916
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/77267/2/1999-16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. O. Ramsay, 1998. "Estimating smooth monotone functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 365-375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charu Sharma & Amber Habib & Sunil Bowry, 2018. "Cluster analysis of stocks using price movements of high frequency data from National Stock Exchange," Papers 1803.09514, arXiv.org.
    2. Shively, Thomas S. & Kockelman, Kara & Damien, Paul, 2010. "A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 699-715, June.
    3. Gattone, Stefano Antonio & Fortuna, Francesca & Evangelista, Adelia & Di Battista, Tonio, 2022. "Simultaneous confidence bands for the functional mean of convex curves," Econometrics and Statistics, Elsevier, vol. 24(C), pages 183-193.
    4. repec:jss:jstsof:18:i04 is not listed on IDEAS
    5. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    6. C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
    7. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    8. David BENATIA & Etienne BILLETTE de VILLEMEUR, 2019. "Strategic Reneging in Sequential Imperfect Markets," Working Papers 2019-19, Center for Research in Economics and Statistics.
    9. Cai, Bo & Dunson, David B., 2007. "Bayesian Multivariate Isotonic Regression Splines: Applications to Carcinogenicity Studies," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1158-1171, December.
    10. Mauricio Lopez-Mendez & Rowan Iskandar & Eric Jutkowitz, 2023. "Individual and Dyadic Health-Related Quality of Life of People Living with Dementia and their Caregivers," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 18(4), pages 1673-1692, August.
    11. Gabriel Riutort-Mayol & Virgilio Gómez-Rubio & José Luis Lerma & Julio M. del Hoyo-Meléndez, 2020. "Correlated Functional Models with Derivative Information for Modeling Microfading Spectrometry Data on Rock Art Paintings," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    12. Härdle, Wolfgang & Yatchew, Adonis, 2001. "Dynamic nonparametric state price density estimation using constrained least squares and the bootstrap," SFB 373 Discussion Papers 2002,16, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    13. Ian Fillmore, 2021. "Price Discrimination and Public Policy in the U.S. College Market," Working Papers 2021-028, Human Capital and Economic Opportunity Working Group.
    14. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    15. Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
    16. John Haslett & Andrew Parnell, 2008. "A simple monotone process with application to radiocarbon‐dated depth chronologies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 399-418, September.
    17. Ng, Kenyon & Turlach, Berwin A. & Murray, Kevin, 2019. "A flexible sequential Monte Carlo algorithm for parametric constrained regression," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 13-26.
    18. Zhang, Ruizhi & Wang, Jian & Mei, Yajun, 2017. "Search for evergreens in science: A functional data analysis," Journal of Informetrics, Elsevier, vol. 11(3), pages 629-644.
    19. Zhou, He & Zou, Hui, 2024. "The nonparametric Box–Cox model for high-dimensional regression analysis," Journal of Econometrics, Elsevier, vol. 239(2).
    20. Kim, Yuwon & Koo, Ja-Yong, 2005. "Inverse boosting for monotone regression functions," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 757-770, June.
    21. Shin, Yei Eun & Zhou, Lan & Ding, Yu, 2022. "Joint estimation of monotone curves via functional principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:199916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.