IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v44y2010i5p699-715.html
   My bibliography  Save this article

A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics

Author

Listed:
  • Shively, Thomas S.
  • Kockelman, Kara
  • Damien, Paul

Abstract

This paper uses a semi-parametric Poisson-gamma model to estimate the relationships between crash counts and various roadway characteristics, including curvature, traffic levels, speed limit and surface width. A Bayesian nonparametric estimation procedure is employed for the model's link function, substantially reducing the risk of a mis-specified model. It is shown via simulation that little is lost in terms of estimation quality if the nonparametric estimation procedure is used when standard parametric assumptions (e.g., linear functional forms) are satisfied, but there is significant gain if the parametric assumptions are violated. It is also shown that imposing appropriate monotonicity constraints on the relationships provides better function estimates. Results suggest that key factors for explaining crash rate variability across roadways are the amount and density of traffic, presence and degree of a horizontal curve, and road classification. Issues related to count forecasting on individual roadway segments and out-of-sample validation measures also are discussed.

Suggested Citation

  • Shively, Thomas S. & Kockelman, Kara & Damien, Paul, 2010. "A Bayesian semi-parametric model to estimate relationships between crash counts and roadway characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 699-715, June.
  • Handle: RePEc:eee:transb:v:44:y:2010:i:5:p:699-715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00163-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. O. Ramsay, 1998. "Estimating smooth monotone functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 365-375.
    2. Thomas S. Shively & Thomas W. Sager & Stephen G. Walker, 2009. "A Bayesian approach to non‐parametric monotone function estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 159-175, January.
    3. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    4. Brian Neelon & David B. Dunson, 2004. "Bayesian Isotonic Regression and Trend Analysis," Biometrics, The International Biometric Society, vol. 60(2), pages 398-406, June.
    5. Dunson, David B., 2005. "Bayesian Semiparametric Isotonic Regression for Count Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 618-627, June.
    6. Wong, Chi-ming & Kohn, Robert, 1996. "A Bayesian approach to additive semiparametric regression," Journal of Econometrics, Elsevier, vol. 74(2), pages 209-235, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parry, Katharina & Hazelton, Martin L., 2013. "Bayesian inference for day-to-day dynamic traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 104-115.
    2. Nopadon Kronprasert & Katesirint Boontan & Patipat Kanha, 2021. "Crash Prediction Models for Horizontal Curve Segments on Two-Lane Rural Roads in Thailand," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    3. Wang, Zhengli & Jiang, Hai, 2019. "Simultaneous correction of the time and location bias associated with a reported crash by exploiting the spatiotemporal evolution of travel speed," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 199-223.
    4. Laura Cáceres & Miguel A. Fernández & Alfonso Gordaliza & Aquilino Molinero, 2021. "Detection of Geometric Risk Factors Affecting Head-On Collisions through Multiple Logistic Regression: Improving Two-Way Rural Road Design via 2+1 Road Adaptation," IJERPH, MDPI, vol. 18(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    2. Thomas S. Shively & Thomas W. Sager & Stephen G. Walker, 2009. "A Bayesian approach to non‐parametric monotone function estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 159-175, January.
    3. Cai, Bo & Dunson, David B., 2007. "Bayesian Multivariate Isotonic Regression Splines: Applications to Carcinogenicity Studies," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1158-1171, December.
    4. John Haslett & Andrew Parnell, 2008. "A simple monotone process with application to radiocarbon‐dated depth chronologies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 399-418, September.
    5. Christophe Abraham & Khader Khadraoui, 2015. "Bayesian regression with B-splines under combinations of shape constraints and smoothness properties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(2), pages 150-170, May.
    6. Hazelton, Martin L. & Turlach, Berwin A., 2011. "Semiparametric regression with shape-constrained penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2871-2879, October.
    7. C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
    8. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    9. Gabriel Riutort-Mayol & Virgilio Gómez-Rubio & José Luis Lerma & Julio M. del Hoyo-Meléndez, 2020. "Correlated Functional Models with Derivative Information for Modeling Microfading Spectrometry Data on Rock Art Paintings," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    10. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    11. Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
    12. Xingdong Feng & Nell Sedransk & Jessie Q. Xia, 2014. "Calibration using constrained smoothing with applications to mass spectrometry data," Biometrics, The International Biometric Society, vol. 70(2), pages 398-408, June.
    13. Taeryon Choi & Hea-Jung Kim & Seongil Jo, 2016. "Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2751-2771, November.
    14. Geweke, John & Keane, Michael, 2005. "Bayesian Cross-Sectional Analysis of the Conditional Distribution of Earnings of Men in the United States, 1967-1996: Appendices," MPRA Paper 54286, University Library of Munich, Germany.
    15. Geweke, John & Keane, Michael, 2005. "Bayesian Cross-Sectional Analysis of the Conditional Distribution of Earnings of Men in the United States, 1967-1996," MPRA Paper 54281, University Library of Munich, Germany.
    16. Chenguang Wang & Ao Yuan & Leslie Cope & Jing Qin, 2022. "A semiparametric isotonic regression model for skewed distributions with application to DNA–RNA–protein analysis," Biometrics, The International Biometric Society, vol. 78(4), pages 1464-1474, December.
    17. Ander Wilson & David M. Reif & Brian J. Reich, 2014. "Hierarchical dose–response modeling for high-throughput toxicity screening of environmental chemicals," Biometrics, The International Biometric Society, vol. 70(1), pages 237-246, March.
    18. Mary Meyer & Amber Hackstadt & Jennifer Hoeting, 2011. "Bayesian estimation and inference for generalised partial linear models using shape-restricted splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 867-884.
    19. Yang Liu & Xiaojing Wang, 2020. "Bayesian Nonparametric Monotone Regression of Dynamic Latent Traits in Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 274-296, June.
    20. Cristina Rueda & Miguel Fernández & Bonifacio Salvador, 2009. "Bayes Discriminant Rules with Ordered Predictors," Journal of Classification, Springer;The Classification Society, vol. 26(2), pages 201-225, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:44:y:2010:i:5:p:699-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.