IDEAS home Printed from https://ideas.repec.org/p/zbw/fsfmwp/211.html
   My bibliography  Save this paper

Default probabilities and default correlations under stress

Author

Listed:
  • Packham, Natalie
  • Kalkbrener, Michael
  • Overbeck, Ludger

Abstract

We investigate default probabilities and default correlations of Merton-type credit portfolio models in stress scenarios where a common risk factor is truncated. The analysis is performed in the class of elliptical distributions, a family of light-tailed to heavy-tailed distributions encompassing many distributions commonly found in financial modelling. It turns out that the asymptotic limit of default probabilities and default correlations depend on the max-domain of the elliptical distribution's mixing variable. In case the mixing variable is regularly varying, default probabilities are strictly smaller than 1 and default correlations are in (0; 1). Both can be expressed in terms of the Student t-distribution function. In the rapidly varying case, default probabilities are 1 and default correlations are 0. We compare our results to the tail dependence function and discuss implications for credit portfolio modelling.

Suggested Citation

  • Packham, Natalie & Kalkbrener, Michael & Overbeck, Ludger, 2014. "Default probabilities and default correlations under stress," Frankfurt School - Working Paper Series 211, Frankfurt School of Finance and Management.
  • Handle: RePEc:zbw:fsfmwp:211
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/97176/1/784952388.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. Klaus Duellmann & Martin Erdelmeier, 2009. "Crash Testing German Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 139-175, September.
    3. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    4. Rafael Schmidt, 2002. "Tail dependence for elliptically contoured distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(2), pages 301-327, May.
    5. N. H. Bingham & Rudiger Kiesel, 2002. "Semi-parametric modelling in finance: theoretical foundations," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 241-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koziol, Philipp & Schell, Carmen & Eckhardt, Meik, 2015. "Credit risk stress testing and copulas: Is the Gaussian copula better than its reputation?," Discussion Papers 46/2015, Deutsche Bundesbank.
    2. Cai, Zongwu & Fang, Ying & Lin, Ming & Su, Jia, 2018. "Inferences for a Partially Varying Coefficient Model With Endogenous Regressors," IRTG 1792 Discussion Papers 2018-047, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Wang, Honglin & Yu, Fan & Zhou, Yinggang, 2018. "Property Investment and Rental Rate under Housing Price Uncertainty: A Real Options Approach," IRTG 1792 Discussion Papers 2018-051, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Yan, Ji Gao, 2018. "Complete Convergence and Complete Moment Convergence for Maximal Weighted Sums of Extended Negatively Dependent Random Variables," IRTG 1792 Discussion Papers 2018-040, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Zhong, Wei & Liu, Xi & Ma, Shuangge, 2018. "Variable selection and direction estimation for single-index models via DC-TGDR method," IRTG 1792 Discussion Papers 2018-050, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Guo, Shaojun & Li, Dong & Li, Muyi, 2018. "Strict Stationarity Testing and GLAD Estimation of Double Autoregressive Models," IRTG 1792 Discussion Papers 2018-049, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    7. Xiaojia Bao & Qingliang Fan, 2020. "The impact of temperature on gaming productivity: evidence from online games," Empirical Economics, Springer, vol. 58(2), pages 835-867, February.
    8. Kuczmaszewska, Anna & Yan, Ji Gao, 2018. "On complete convergence in Marcinkiewicz-Zygmund type SLLN for random variables," IRTG 1792 Discussion Papers 2018-041, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. Yatracos, Yannis G., 2018. "Residual'S Influence Index (Rinfin), Bad Leverage And Unmasking In High Dimensional L2-Regression," IRTG 1792 Discussion Papers 2018-060, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Nasekin, Sergey & Chen, Cathy Yi-Hsuan, 2018. "Deep learning-based cryptocurrency sentiment construction," IRTG 1792 Discussion Papers 2018-066, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    11. Zbonakova, Lenka & Li, Xinjue & Härdle, Wolfgang Karl, 2018. "Penalized Adaptive Forecasting with Large Information Sets and Structural Changes," IRTG 1792 Discussion Papers 2018-039, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Packham, Natalie & Kalkbrener, Michael & Overbeck, Ludger, 2018. "Default probabilities and default correlations under stress," IRTG 1792 Discussion Papers 2018-037, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Abel Elizalde, 2006. "Credit Risk Models II: Structural Models," Working Papers wp2006_0606, CEMFI.
    3. Ruja, Catalin, 2014. "Macro Stress-Testing Credit Risk in Romanian Banking System," MPRA Paper 58244, University Library of Munich, Germany.
    4. Borio, Claudio & Drehmann, Mathias & Tsatsaronis, Kostas, 2014. "Stress-testing macro stress testing: Does it live up to expectations?," Journal of Financial Stability, Elsevier, vol. 12(C), pages 3-15.
    5. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    6. Abel Elizalde, 2006. "Credit Risk Models I: Default Correlation in Intensity Models," Working Papers wp2006_0605, CEMFI.
    7. Schmidt, Rafael & Schmieder, Christian, 2009. "Modelling dynamic portfolio risk using risk drivers of elliptical processes," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 229-244, April.
    8. Mahmoud Hamada & Emiliano A. Valdez, 2008. "CAPM and Option Pricing With Elliptically Contoured Distributions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 387-409, June.
    9. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
    10. Ferreira, Helena & Ferreira, Marta, 2012. "Tail dependence between order statistics," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 176-192.
    11. Gady Jacoby & Chuan Liao & Jonathan A. Batten, 2007. "A Pure Test for the Elasticity of Yield Spreads," The Institute for International Integration Studies Discussion Paper Series iiisdp195, IIIS.
    12. ilya, gikhman, 2006. "Fixed-income instrument pricing," MPRA Paper 1449, University Library of Munich, Germany.
    13. Gordian Rättich & Kim Clark & Evi Hartmann, 2011. "Performance measurement and antecedents of early internationalizing firms: A systematic assessment," Working Papers 0031, College of Business, University of Texas at San Antonio.
    14. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    15. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    16. Neus, Werner, 2014. "Eigenkapitalnormen, Boni und Risikoanreize in Banken," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(2), pages 92-107.
    17. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    18. Ulrike Malmendier & Vincenzo Pezone & Hui Zheng, 2023. "Managerial Duties and Managerial Biases," Management Science, INFORMS, vol. 69(6), pages 3174-3201, June.
    19. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    20. Lily Y. Liu, 2017. "Estimating Loss Given Default from CDS under Weak Identification," Supervisory Research and Analysis Working Papers RPA 17-1, Federal Reserve Bank of Boston.

    More about this item

    Keywords

    financial risk management; credit portfolio modelling; stress testing; elliptic distribution; max-domain;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fsfmwp:211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/hfbfide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.