IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v58y2020i2d10.1007_s00181-018-1523-7.html
   My bibliography  Save this article

The impact of temperature on gaming productivity: evidence from online games

Author

Listed:
  • Xiaojia Bao

    (Xiamen University)

  • Qingliang Fan

    (Xiamen University)

Abstract

This paper studies the short-run impacts of temperature on human performance in the computer-mediated environment using server logs of a popular online game in China. Taking advantage of the quasi-experiment of winter central heating policy in China, we distinguish the impacts of outdoor and indoor temperature and find that low temperatures below 5 $$^{\circ }$$∘C decrease game performance significantly. Non-experienced players suffered larger performance drop than experienced ones. Access to central heating attenuates negative impacts of low outdoor temperatures on gamers’ performance. High temperatures above 21 $$^{\circ }$$∘C also lead to drops in game performance. We conclude that expanding the current central heating zone will bring an increase in human performance by approximately 4% in Shanghai and surrounding provinces in the winter. While often perceived as a leisure activity, online gaming requires intense engagement and the deployment of cognitive, social, and motor skills, which are also key skills for productive activities. Our results draw attention to potential damages of extreme temperature on human performance in the modern computer-mediated environment.

Suggested Citation

  • Xiaojia Bao & Qingliang Fan, 2020. "The impact of temperature on gaming productivity: evidence from online games," Empirical Economics, Springer, vol. 58(2), pages 835-867, February.
  • Handle: RePEc:spr:empeco:v:58:y:2020:i:2:d:10.1007_s00181-018-1523-7
    DOI: 10.1007/s00181-018-1523-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-018-1523-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-018-1523-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paolo Pagnottoni & Thomas Dimpfl, 2019. "Price discovery on Bitcoin markets," Digital Finance, Springer, vol. 1(1), pages 139-161, November.
    2. Zhong, Wei & Liu, Xi & Ma, Shuangge, 2018. "Variable selection and direction estimation for single-index models via DC-TGDR method," IRTG 1792 Discussion Papers 2018-050, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Packham, Natalie & Kalkbrener, Michael & Overbeck, Ludger, 2014. "Default probabilities and default correlations under stress," Frankfurt School - Working Paper Series 211, Frankfurt School of Finance and Management.
    4. Daron Acemoglu & David Autor, 2012. "What Does Human Capital Do? A Review of Goldin and Katz's The Race between Education and Technology," Journal of Economic Literature, American Economic Association, vol. 50(2), pages 426-463, June.
    5. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    6. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    7. Geoffrey Heal & Jisung Park, 2013. "Feeling the Heat: Temperature, Physiology & the Wealth of Nations," NBER Working Papers 19725, National Bureau of Economic Research, Inc.
    8. Garth Heutel & Nolan H. Miller & David Molitor, 2021. "Adaptation and the Mortality Effects of Temperature across U.S. Climate Regions," The Review of Economics and Statistics, MIT Press, vol. 103(4), pages 740-753, October.
    9. Christian M Hafner, 2020. "Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 233-249.
    10. Bachoc, Francois & Suvorikova, Alexandra & Loubes, Jean-Michel & Spokoiny, Vladimir, 2018. "Gaussian Process Forecast with multidimensional distributional entries," IRTG 1792 Discussion Papers 2018-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    11. Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
    12. Yang, Zihui & Zhou, Yinggang, 2018. "Systemic Risk in Global Volatility Spillover Networks: Evidence from Option-implied Volatility Indices," IRTG 1792 Discussion Papers 2018-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Guo, Li & Tao, Yubo & Härdle, Wolfgang Karl, 2018. "Understanding Latent Group Structure of Cryptocurrencies Market: A Dynamic Network Perspective," IRTG 1792 Discussion Papers 2018-032, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. E. Somanathan & Rohini Somanathan & Anant Sudarshan & Meenu Tewari, 2021. "The Impact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1797-1827.
    15. Marie Connolly, 2008. "Here Comes the Rain Again: Weather and the Intertemporal Substitution of Leisure," Journal of Labor Economics, University of Chicago Press, vol. 26(1), pages 73-100.
    16. Efimov, Kirill & Adamyan, Larisa & Spokoiny, Vladimir, 2018. "Adaptive Nonparametric Clustering," IRTG 1792 Discussion Papers 2018-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Eisenberg Daniel & Okeke Edward, 2009. "Too Cold for a Jog? Weather, Exercise, and Socioeconomic Status," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(1), pages 1-32, June.
    18. Tryphonides, Andreas, 2018. "Learning from Errors: The case of monetary and fiscal policy regimes," IRTG 1792 Discussion Papers 2018-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Chen, Haiqiang & Li, Yingxing & Lin, Ming & Zhu, Yanli, 2018. "A Regime Shift Model with Nonparametric Switching Mechanism," IRTG 1792 Discussion Papers 2018-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Härdle, Wolfgang Karl & Chen, Shi & Liang, Chong & Schienle, Melanie, 2018. "Time-varying Limit Order Book Networks," IRTG 1792 Discussion Papers 2018-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    21. Richard B. Freeman, 2002. "The Labour Market in the New Information Economy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 18(3), pages 288-305.
    22. Kalkbrener, Michael & Packham, Natalie, 2018. "Correlation Under Stress In Normal Variance Mixture Models," IRTG 1792 Discussion Papers 2018-035, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    23. Douglas Almond & Yuyu Chen & Michael Greenstone & Hongbin Li, 2009. "Winter Heating or Clean Air? Unintended Impacts of China's Huai River Policy," American Economic Review, American Economic Association, vol. 99(2), pages 184-190, May.
    24. Alan Barreca & Olivier Deschenes & Melanie Guldi, 2015. "Maybe Next Month? Temperature Shocks, Climate Change, and Dynamic Adjustments in Birth Rates," NBER Working Papers 21681, National Bureau of Economic Research, Inc.
    25. Yi-Hsuan Chen, Cathy & Fengler, Matthias & Härdle, Wolfgang Karl & Liu, Yanchu, 2018. "Textual Sentiment, Option Characteristics, and Stock Return Predictability," Economics Working Paper Series 1808, University of St. Gallen, School of Economics and Political Science.
    26. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    27. Davies, Laurie, 2018. "Lasso, knockoff and Gaussian covariates: a comparison," IRTG 1792 Discussion Papers 2018-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    28. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    29. Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    30. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    31. Guo, Shaojun & Li, Dong & Li, Muyi, 2018. "Strict Stationarity Testing and GLAD Estimation of Double Autoregressive Models," IRTG 1792 Discussion Papers 2018-049, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    32. Koziuk, Andzhey & Spokoiny, Vladimir, 2018. "Toolbox: Gaussian comparison on Eucledian balls," IRTG 1792 Discussion Papers 2018-028, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    33. Almosova, Anna, 2018. "A Monetary Model of Blockchain," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181502, Verein für Socialpolitik / German Economic Association.
    34. Marshall Burke & John Dykema & David B. Lobell & Edward Miguel & Shanker Satyanath, 2015. "Incorporating Climate Uncertainty into Estimates of Climate Change Impacts," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 461-471, May.
    35. Chen, Haiqiang & Li, Yingxing & Lin, Ming & Zhu, Yanli, 2018. "A Regime Shift Model with Nonparametric Switching Mechanism," IRTG 1792 Discussion Papers 2018-048, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    36. Vomfell, Lara & Härdle, Wolfgang Karl & Lessmann, Stefan, 2018. "Improving Crime Count Forecasts Using Twitter and Taxi Data," IRTG 1792 Discussion Papers 2018-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    37. Cai, Zongwu & Fang, Ying & Lin, Ming & Su, Jia, 2018. "Inferences for a Partially Varying Coefficient Model With Endogenous Regressors," IRTG 1792 Discussion Papers 2018-047, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    38. Almosova, Anna, 2018. "A Note on Cryptocurrencies and Currency Competition," IRTG 1792 Discussion Papers 2018-006, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    39. Feng, Zheng-Hui & Lin, Lu & Zhu, Ruo-Qing & Zhu, Li-Xing, 2018. "Nonparametric Variable Selection and Its Application to Additive Models," IRTG 1792 Discussion Papers 2018-002, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    40. Koziuk, Andzhey & Spokoiny, Vladimir, 2018. "Instrumental variables regression," IRTG 1792 Discussion Papers 2018-031, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    41. Almosova, Anna, 2018. "A Monetary Model of Blockchain," IRTG 1792 Discussion Papers 2018-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    42. Wang, Honglin & Yu, Fan & Zhou, Yinggang, 2018. "Property Investment and Rental Rate under Housing Price Uncertainty: A Real Options Approach," IRTG 1792 Discussion Papers 2018-051, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    43. Cai, Xiqian & Lu, Yi & Wang, Jin, 2018. "The impact of temperature on manufacturing worker productivity: Evidence from personnel data," Journal of Comparative Economics, Elsevier, vol. 46(4), pages 889-905.
    44. Packham, Natalie & Kalkbrener, Michael & Overbeck, Ludger, 2018. "Default probabilities and default correlations under stress," IRTG 1792 Discussion Papers 2018-037, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    45. Stefan Wagner & Martin C. Goossen, 2018. "Knowing me, knowing you: Inventor mobility and the formation of technology-oriented alliances," ESMT Research Working Papers ESMT-18-01, ESMT European School of Management and Technology.
    46. Götze, Friedrich & Naumov, Alexey & Spokoiny, Vladimir & Ulyanov, Vladimir, 2018. "Large ball probabilities, Gaussian comparison and anti-concentration," IRTG 1792 Discussion Papers 2018-026, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    47. Silin, Igor & Spokoiny, Vladimir, 2018. "Bayesian inference for spectral projectors of covariance matrix," IRTG 1792 Discussion Papers 2018-027, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    48. Olivier Deschênes & Michael Greenstone, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Reply," American Economic Review, American Economic Association, vol. 102(7), pages 3761-3773, December.
    49. Ebert, Johannes & Spokoiny, Vladimir & Suvorikova, Alexandra, 2018. "Construction of Non-asymptotic Confidence Sets in 2 -Wasserstein Space," IRTG 1792 Discussion Papers 2018-025, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    50. Naumov, A. & Spokoiny, V. & Ulyanovk, V., 2018. "Bootstrap Confidence Sets for Spectral Projectors of Sample Covariance," IRTG 1792 Discussion Papers 2018-024, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    51. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    52. Yan, Ji Gao, 2018. "Complete Convergence and Complete Moment Convergence for Maximal Weighted Sums of Extended Negatively Dependent Random Variables," IRTG 1792 Discussion Papers 2018-040, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    53. Hryshchuk, Antanina & Lessmann, Stefan, 2018. "Deregulated day-ahead electricity markets in Southeast Europe: Price forecasting and comparative structural analysis," IRTG 1792 Discussion Papers 2018-009, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    54. Chiu, Hsin-Yu & Chiang, Mi-Hsiu & Kuo, Wei-Yu, 2018. "Predicative Ability of Similarity-based Futures Trading Strategies," IRTG 1792 Discussion Papers 2018-045, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patel, Pankaj C. & Devaraj, Srikant & Quigley, Narda R. & Oghazi, Pejvak, 2020. "The influence of sunlight on taxi driver productivity," Journal of Business Research, Elsevier, vol. 115(C), pages 456-468.
    2. Yatracos, Yannis G., 2018. "Residual'S Influence Index (Rinfin), Bad Leverage And Unmasking In High Dimensional L2-Regression," IRTG 1792 Discussion Papers 2018-060, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yatracos, Yannis G., 2018. "Residual'S Influence Index (Rinfin), Bad Leverage And Unmasking In High Dimensional L2-Regression," IRTG 1792 Discussion Papers 2018-060, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Qingliang Fan & Wei Zhong, 2018. "Nonparametric Additive Instrumental Variable Estimator: A Group Shrinkage Estimation Perspective," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 388-399, July.
    3. Wang, Honglin & Yu, Fan & Zhou, Yinggang, 2018. "Property Investment and Rental Rate under Housing Price Uncertainty: A Real Options Approach," IRTG 1792 Discussion Papers 2018-051, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Zhong, Wei & Liu, Xi & Ma, Shuangge, 2018. "Variable selection and direction estimation for single-index models via DC-TGDR method," IRTG 1792 Discussion Papers 2018-050, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Guo, Shaojun & Li, Dong & Li, Muyi, 2018. "Strict Stationarity Testing and GLAD Estimation of Double Autoregressive Models," IRTG 1792 Discussion Papers 2018-049, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Cai, Zongwu & Fang, Ying & Lin, Ming & Su, Jia, 2018. "Inferences for a Partially Varying Coefficient Model With Endogenous Regressors," IRTG 1792 Discussion Papers 2018-047, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    7. Kuczmaszewska, Anna & Yan, Ji Gao, 2018. "On complete convergence in Marcinkiewicz-Zygmund type SLLN for random variables," IRTG 1792 Discussion Papers 2018-041, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Chen, Haiqiang & Li, Yingxing & Lin, Ming & Zhu, Yanli, 2018. "A Regime Shift Model with Nonparametric Switching Mechanism," IRTG 1792 Discussion Papers 2018-048, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. Zbonakova, Lenka & Li, Xinjue & Härdle, Wolfgang Karl, 2018. "Penalized Adaptive Forecasting with Large Information Sets and Structural Changes," IRTG 1792 Discussion Papers 2018-039, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Yan, Ji Gao, 2018. "Complete Convergence and Complete Moment Convergence for Maximal Weighted Sums of Extended Negatively Dependent Random Variables," IRTG 1792 Discussion Papers 2018-040, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    11. Chiu, Hsin-Yu & Chiang, Mi-Hsiu & Kuo, Wei-Yu, 2018. "Predicative Ability of Similarity-based Futures Trading Strategies," IRTG 1792 Discussion Papers 2018-045, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Packham, Natalie & Kalkbrener, Michael & Overbeck, Ludger, 2018. "Default probabilities and default correlations under stress," IRTG 1792 Discussion Papers 2018-037, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Packham, Natalie, 2018. "Optimal contracts under competition when uncertainty from adverse selection and moral hazard are present," IRTG 1792 Discussion Papers 2018-033, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Packham, Natalie & Woebbeking, Fabian, 2018. "A factor-model approach for correlation scenarios and correlation stress-testing," IRTG 1792 Discussion Papers 2018-034, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Kalkbrener, Michael & Packham, Natalie, 2018. "Correlation Under Stress In Normal Variance Mixture Models," IRTG 1792 Discussion Papers 2018-035, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Guo, Li & Tao, Yubo & Härdle, Wolfgang Karl, 2018. "Understanding Latent Group Structure of Cryptocurrencies Market: A Dynamic Network Perspective," IRTG 1792 Discussion Papers 2018-032, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Koziuk, Andzhey & Spokoiny, Vladimir, 2018. "Toolbox: Gaussian comparison on Eucledian balls," IRTG 1792 Discussion Papers 2018-028, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    18. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    20. Feriga, Moustafa & Lozano Gracia, Nancy & Serneels, Pieter, 2024. "The Impact of Climate Change on Work Lessons for Developing Countries," IZA Discussion Papers 16914, Institute of Labor Economics (IZA).

    More about this item

    Keywords

    Temperature; Human performance; Online game; Heating;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:58:y:2020:i:2:d:10.1007_s00181-018-1523-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.