IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdps/462015.html
   My bibliography  Save this paper

Credit risk stress testing and copulas: Is the Gaussian copula better than its reputation?

Author

Listed:
  • Koziol, Philipp
  • Schell, Carmen
  • Eckhardt, Meik

Abstract

In the last decade, stress tests have become indispensable in bank risk management which has led to significantly increased requirements for stress tests for banks and regulators. Although the complexity of stress testing frameworks has been enhanced considerably over the course of the last few years, the majority of credit risk models (e.g. Merton (1974), CreditMetrics, KMV) still rely on Gaussian copulas. This paper complements the finance literature providing new insights into the impact of different copulas in stress test applications using supervisory data of 17 large German banks. Our findings imply that the use of a Gaussian copula in credit risk stress testing should not by default be dismissed in favor of a heavy-tailed copula which is widely recommended in the finance literature. Gaussian copula would be the appropriate choice for estimating high stress effects under extreme scenarios. Heavy-tailed copulas like the Clayton or the t copula are recommended in the case of less severe scenarios. Furthermore, the paper provides clear advice for designing a credit risk stress test.

Suggested Citation

  • Koziol, Philipp & Schell, Carmen & Eckhardt, Meik, 2015. "Credit risk stress testing and copulas: Is the Gaussian copula better than its reputation?," Discussion Papers 46/2015, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdps:462015
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/126566/1/847120902.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Packham, Natalie & Kalkbrener, Michael & Overbeck, Ludger, 2014. "Default probabilities and default correlations under stress," Frankfurt School - Working Paper Series 211, Frankfurt School of Finance and Management.
    2. Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
    3. Barbara Choroś-Tomczyk & Wolfgang Karl H�rdle & Ludger Overbeck, 2014. "Copula dynamics in CDOs," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1573-1585, September.
    4. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    5. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    6. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    7. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    8. Hamed Amini & Rama Cont & Andreea Minca, 2012. "Stress Testing The Resilience Of Financial Networks," World Scientific Book Chapters, in: Matheus R Grasselli & Lane P Hughston (ed.), Finance at Fields, chapter 2, pages 17-36, World Scientific Publishing Co. Pte. Ltd..
    9. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    10. Borio, Claudio & Drehmann, Mathias & Tsatsaronis, Kostas, 2014. "Stress-testing macro stress testing: Does it live up to expectations?," Journal of Financial Stability, Elsevier, vol. 12(C), pages 3-15.
    11. Klaus Düllmann & Thomas Kick, 2014. "Stress testing German banks against a global credit crunch," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(4), pages 337-361, November.
    12. Thomas Breuer & Martin Jandacka & Klaus Rheinberger & Martin Summer, 2009. "How to Find Plausible, Severe and Useful Stress Scenarios," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 205-224, September.
    13. Schuermann, Til, 2014. "Stress testing banks," International Journal of Forecasting, Elsevier, vol. 30(3), pages 717-728.
    14. Crook, Jonathan & Moreira, Fernando, 2011. "Checking for asymmetric default dependence in a credit card portfolio: A copula approach," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 728-742, September.
    15. Christian Genest & Michel Gendron & Michaël Bourdeau-Brien, 2009. "The Advent of Copulas in Finance," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 609-618.
    16. Hamed Amini & Rama Cont & Andreea Minca, 2012. "Stress Testing The Resilience Of Financial Networks," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-20.
    17. Hamed Amini & Rama Cont & Andreea Minca, 2012. "Stress testing the resilience of financial networks," Post-Print hal-00801538, HAL.
    18. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siemsen, Thomas & Vilsmeier, Johannes, 2017. "A stress test framework for the German residential mortgage market: Methodology and application," Discussion Papers 37/2017, Deutsche Bundesbank.
    2. Ghufran Ahmad & Muhammad Suhail Rizwan & Dawood Ashraf, 2021. "Systemic risk and macroeconomic forecasting: A globally applicable copula‐based approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1420-1443, December.
    3. Nneka Umeorah & Phillip Mashele & Matthias Ehrhardt, 2021. "Pricing basket default swaps using quasi-analytic techniques," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 241-267, June.
    4. Lourme, Alexandre & Maurer, Frantz, 2017. "Testing the Gaussian and Student's t copulas in a risk management framework," Economic Modelling, Elsevier, vol. 67(C), pages 203-214.
    5. Christian Bucio Pacheco & Luis Villanueva & Raúl de Jesús Gutiérrez, 2021. "Dependence in the Banking Sector of the United States and Mexico: A Copula Approach," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(TNEA), pages 1-23, Septiembr.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roncoroni, Alan & Battiston, Stefano & Escobar-Farfán, Luis O.L. & Martinez-Jaramillo, Serafin, 2021. "Climate risk and financial stability in the network of banks and investment funds," Journal of Financial Stability, Elsevier, vol. 54(C).
    2. Dror Y. Kenett & Sary Levy-Carciente & Adam Avakian & H. Eugene Stanley & Shlomo Havlin, 2015. "Dynamical Macroprudential Stress Testing Using Network Theory," Working Papers 15-12, Office of Financial Research, US Department of the Treasury.
    3. Levy-Carciente, Sary & Kenett, Dror Y. & Avakian, Adam & Stanley, H. Eugene & Havlin, Shlomo, 2015. "Dynamical macroprudential stress testing using network theory," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 164-181.
    4. Pelster, Matthias & Vilsmeier, Johannes, 2016. "The determinants of CDS spreads: Evidence from the model space," Discussion Papers 43/2016, Deutsche Bundesbank.
    5. Jordaan, D. & Kirsten, J., 2018. "Measuring the Fragility of Agribusiness Chains: A Case Study of the South African Lamb Chain," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277501, International Association of Agricultural Economists.
    6. Raffestin, Louis, 2014. "Diversification and systemic risk," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 85-106.
    7. Greenwood, Robin & Landier, Augustin & Thesmar, David, 2015. "Vulnerable banks," Journal of Financial Economics, Elsevier, vol. 115(3), pages 471-485.
    8. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    9. Francesca Biagini & Andrea Mazzon & Thilo Meyer-Brandis, 2018. "Financial asset bubbles in banking networks," Papers 1806.01728, arXiv.org.
    10. Vitali, Stefania & Battiston, Stefano & Gallegati, Mauro, 2016. "Financial fragility and distress propagation in a network of regions," Journal of Economic Dynamics and Control, Elsevier, vol. 62(C), pages 56-75.
    11. Penikas, Henry & Simakova, Varvara, 2009. "Interest Rate Risk Management Based on Copula-GARCH Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 13(1), pages 3-36.
    12. in 't Veld, Daan & van der Leij, Marco & Hommes, Cars, 2020. "The formation of a core-periphery structure in heterogeneous financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    13. Mr. Dimitri G Demekas, 2015. "Designing Effective Macroprudential Stress Tests: Progress So Far and the Way Forward," IMF Working Papers 2015/146, International Monetary Fund.
    14. Yann Braouezec & Lakshithe Wagalath, 2018. "Risk-Based Capital Requirements and Optimal Liquidation in a Stress Scenario [Testing macroprudential stress tests: the risk of regulatory risk weights]," Review of Finance, European Finance Association, vol. 22(2), pages 747-782.
    15. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    16. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    17. Matthew Pritsker, 2017. "Choosing Stress Scenarios for Systemic Risk Through Dimension Reduction," Supervisory Research and Analysis Working Papers RPA 17-4, Federal Reserve Bank of Boston.
    18. Desislava Chetalova & Marcel Wollschlager & Rudi Schafer, 2015. "Dependence structure of market states," Papers 1503.09004, arXiv.org, revised Jul 2015.
    19. Rama Cont & Andreea Minca, 2016. "Credit default swaps and systemic risk," Annals of Operations Research, Springer, vol. 247(2), pages 523-547, December.
    20. Busch, Ramona & Koziol, Philipp & Mitrovic, Marc, 2018. "Many a little makes a mickle: Stress testing small and medium-sized German banks," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 237-253.

    More about this item

    Keywords

    credit risk; top-down stress tests; copulas; macroeconomic scenario;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdps:462015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.