Deep learning-based cryptocurrency sentiment construction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Packham, Natalie & Kalkbrener, Michael & Overbeck, Ludger, 2014. "Default probabilities and default correlations under stress," Frankfurt School - Working Paper Series 211, Frankfurt School of Finance and Management.
- Bingduo Yang & Christian M. Hafner & Guannan Liu & Wei Long, 2021.
"Semiparametric estimation and variable selection for single‐index copula models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 962-988, November.
- Yang, Bingduo & Hafner, Christian M. & Liu, Guannan & Long, Wei, 2018. "Semiparametric Estimation and Variable Selection for Single-index Copula Models," IRTG 1792 Discussion Papers 2018-064, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Yang, Bingduo & Hafner, Christian M. & Liu, Guannan & Long, Wei, 2022. "Semiparametric estimation and variable selection for single-index copula models," LIDAM Reprints ISBA 2022011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bingduo Yang & Christian M. Hafner & Guannan Liu & Wei Long, 2019. "Semiparametric Estimation and Variable Selection for Single-index Copula Models," Working Papers 2019-07-05, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Yang, Zihui & Zhou, Yinggang, 2018. "Systemic Risk in Global Volatility Spillover Networks: Evidence from Option-implied Volatility Indices," IRTG 1792 Discussion Papers 2018-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Guo, Li & Tao, Yubo & Härdle, Wolfgang Karl, 2018. "Understanding Latent Group Structure of Cryptocurrencies Market: A Dynamic Network Perspective," IRTG 1792 Discussion Papers 2018-032, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Tryphonides, Andreas, 2018. "Learning from Errors: The case of monetary and fiscal policy regimes," IRTG 1792 Discussion Papers 2018-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Qingliang Fan & Wei Zhong, 2018.
"Nonparametric Additive Instrumental Variable Estimator: A Group Shrinkage Estimation Perspective,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 388-399, July.
- Fan, Qingliang & Zhong, Wei, 2018. "Nonparametric Additive Instrumental Variable Estimator: A Group Shrinkage Estimation Perspective," IRTG 1792 Discussion Papers 2018-052, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Kuczmaszewska, Anna & Yan, Ji Gao, 2018. "On complete convergence in Marcinkiewicz-Zygmund type SLLN for random variables," IRTG 1792 Discussion Papers 2018-041, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
- Yi-Hsuan Chen, Cathy & Fengler, Matthias & Härdle, Wolfgang Karl & Liu, Yanchu, 2018.
"Textual Sentiment, Option Characteristics, and Stock Return Predictability,"
Economics Working Paper Series
1808, University of St. Gallen, School of Economics and Political Science.
- Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2018. "Textual Sentiment, Option Characteristics, and Stock Return Predictability," IRTG 1792 Discussion Papers 2018-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Ying & Han, Qian & Niu, Linlin, 2018.
"Forecasting the term structure of option implied volatility: The power of an adaptive method,"
Journal of Empirical Finance, Elsevier, vol. 49(C), pages 157-177.
- Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the Term Structure of Option Implied Volatility: The Power of an Adaptive Method," IRTG 1792 Discussion Papers 2018-046, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.
- Petukhina, Alla & Trimborn, Simon & Härdle, Wolfgang Karl & Elendner, Hermann, 2018. "Investing with cryptocurrencies - evaluating the potential of portfolio allocation strategies," IRTG 1792 Discussion Papers 2018-058, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Packham, N., 2018. "Optimal contracts under competition when uncertainty from adverse selection and moral hazard are present," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 99-104.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cathy Yi-Hsuan Chen & Christian M. Hafner, 2019.
"Sentiment-Induced Bubbles in the Cryptocurrency Market,"
JRFM, MDPI, vol. 12(2), pages 1-12, April.
- Chen, Cathy Yi-Hsuan & Hafner, Christian, 2019. "Sentiment-Induced Bubbles in the Cryptocurrency Market," LIDAM Reprints ISBA 2019053, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Christian M. Hafner & Sabrine Majeri, 2022.
"Analysis of cryptocurrency connectedness based on network to transaction volume ratios,"
Digital Finance, Springer, vol. 4(2), pages 187-216, September.
- Hafner, Christian M. & Majeri , Sabrine, 2022. "Analysis of cryptocurrency connectedness based on network to transaction volume ratios," LIDAM Reprints ISBA 2022033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Cheng Few Lee, 2020. "Financial econometrics, mathematics, statistics, and financial technology: an overall view," Review of Quantitative Finance and Accounting, Springer, vol. 54(4), pages 1529-1578, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yatracos, Yannis G., 2018. "Residual'S Influence Index (Rinfin), Bad Leverage And Unmasking In High Dimensional L2-Regression," IRTG 1792 Discussion Papers 2018-060, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Kuczmaszewska, Anna & Yan, Ji Gao, 2018. "On complete convergence in Marcinkiewicz-Zygmund type SLLN for random variables," IRTG 1792 Discussion Papers 2018-041, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Zhong, Wei & Liu, Xi & Ma, Shuangge, 2018. "Variable selection and direction estimation for single-index models via DC-TGDR method," IRTG 1792 Discussion Papers 2018-050, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Zbonakova, Lenka & Li, Xinjue & Härdle, Wolfgang Karl, 2018. "Penalized Adaptive Forecasting with Large Information Sets and Structural Changes," IRTG 1792 Discussion Papers 2018-039, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Guo, Shaojun & Li, Dong & Li, Muyi, 2018. "Strict Stationarity Testing and GLAD Estimation of Double Autoregressive Models," IRTG 1792 Discussion Papers 2018-049, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Cai, Zongwu & Fang, Ying & Lin, Ming & Su, Jia, 2018. "Inferences for a Partially Varying Coefficient Model With Endogenous Regressors," IRTG 1792 Discussion Papers 2018-047, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Xiaojia Bao & Qingliang Fan, 2020.
"The impact of temperature on gaming productivity: evidence from online games,"
Empirical Economics, Springer, vol. 58(2), pages 835-867, February.
- Bao, Xiaojia & Fan, Qingliang, 2018. "The impact of temperature on gaming productivity: evidence from online games," IRTG 1792 Discussion Papers 2018-053, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Yan, Ji Gao, 2018. "Complete Convergence and Complete Moment Convergence for Maximal Weighted Sums of Extended Negatively Dependent Random Variables," IRTG 1792 Discussion Papers 2018-040, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Wang, Honglin & Yu, Fan & Zhou, Yinggang, 2018. "Property Investment and Rental Rate under Housing Price Uncertainty: A Real Options Approach," IRTG 1792 Discussion Papers 2018-051, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Packham, Natalie, 2018. "Optimal contracts under competition when uncertainty from adverse selection and moral hazard are present," IRTG 1792 Discussion Papers 2018-033, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Packham, Natalie & Woebbeking, Fabian, 2018. "A factor-model approach for correlation scenarios and correlation stress-testing," IRTG 1792 Discussion Papers 2018-034, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Qingliang Fan & Wei Zhong, 2018.
"Nonparametric Additive Instrumental Variable Estimator: A Group Shrinkage Estimation Perspective,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 388-399, July.
- Fan, Qingliang & Zhong, Wei, 2018. "Nonparametric Additive Instrumental Variable Estimator: A Group Shrinkage Estimation Perspective," IRTG 1792 Discussion Papers 2018-052, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Haiqiang & Li, Yingxing & Lin, Ming & Zhu, Yanli, 2018. "A Regime Shift Model with Nonparametric Switching Mechanism," IRTG 1792 Discussion Papers 2018-048, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Kalkbrener, Michael & Packham, Natalie, 2018. "Correlation Under Stress In Normal Variance Mixture Models," IRTG 1792 Discussion Papers 2018-035, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chiu, Hsin-Yu & Chiang, Mi-Hsiu & Kuo, Wei-Yu, 2018. "Predicative Ability of Similarity-based Futures Trading Strategies," IRTG 1792 Discussion Papers 2018-045, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Packham, Natalie & Kalkbrener, Michael & Overbeck, Ludger, 2018. "Default probabilities and default correlations under stress," IRTG 1792 Discussion Papers 2018-037, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Koziuk, Andzhey & Spokoiny, Vladimir, 2018. "Toolbox: Gaussian comparison on Eucledian balls," IRTG 1792 Discussion Papers 2018-028, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Guo, Li & Tao, Yubo & Härdle, Wolfgang Karl, 2018. "Understanding Latent Group Structure of Cryptocurrencies Market: A Dynamic Network Perspective," IRTG 1792 Discussion Papers 2018-032, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Sergey Nasekin & Cathy Yi-Hsuan Chen, 2020. "Deep learning-based cryptocurrency sentiment construction," Digital Finance, Springer, vol. 2(1), pages 39-67, September.
- Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
More about this item
Keywords
sentiment analysis; lexicon; social media; word embedding; deep learning;All these keywords.
JEL classification:
- G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
- G4 - Financial Economics - - Behavioral Finance
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2018066. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.