IDEAS home Printed from https://ideas.repec.org/p/zbw/cofedp/0801.html
   My bibliography  Save this paper

A nonparametric regression cross spectrum for multivariate time series

Author

Listed:
  • Beran, Jan

Abstract

We consider dependence structures in multivariate time series that are characterized by deterministic trends. Results from spectral analysis for stationary processes are extended to deterministic trend functions. A regression cross covariance and spectrum are defined. Estimation of these quantities is based on wavelet thresholding. The method is illustrated by a simulated example and a three-dimensional time series consisting of ECG, blood pressure and cardiac stroke volume measurements.

Suggested Citation

  • Beran, Jan, 2008. "A nonparametric regression cross spectrum for multivariate time series," CoFE Discussion Papers 08/01, University of Konstanz, Center of Finance and Econometrics (CoFE).
  • Handle: RePEc:zbw:cofedp:0801
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/32166/1/608950947.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Abramovich & T. Sapatinas & B. W. Silverman, 1998. "Wavelet thresholding via a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 725-749.
    2. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    3. Beran, Jan & Ocker, Dirk, 1999. "SEMIFAR Forecasts, with Applications to Foreign Exchange Rates," CoFE Discussion Papers 99/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shibin, 2016. "Adaptive spectral estimation for nonstationary multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 330-349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beran, Jan & Heiler, Mark A., 2008. "A nonparametric regression cross spectrum for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 684-714, April.
    2. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    3. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    4. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    5. Beran, Jan & Shumeyko, Yevgen, 2012. "Bootstrap testing for discontinuities under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 322-347.
    6. Marco Di Zio & Arnoldo Frigessi, 1999. "Smoothness in Bayesian Non-parametric Regression with Wavelets," Methodology and Computing in Applied Probability, Springer, vol. 1(4), pages 391-405, December.
    7. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    8. Beran, Jan & Feng, Yuanhua, 2000. "Data-driven estimation of semiparametric fractional autoregressive models," CoFE Discussion Papers 00/16, University of Konstanz, Center of Finance and Econometrics (CoFE).
    9. Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.
    10. Beran, Jan & Feng, Yuanhua, 2002. "Recent Developments in Non- and Semiparametric Regression with Fractional Time Series Errors," CoFE Discussion Papers 02/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    11. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    12. A. Antoniadis, 1997. "Rejoinder," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 143-144, August.
    13. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    14. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    15. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Ghosh, Sucharita & Draghicescu, Dana, 2002. "Predicting the distribution function for long-memory processes," International Journal of Forecasting, Elsevier, vol. 18(2), pages 283-290.
    17. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    18. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    19. repec:jss:jstsof:12:i08 is not listed on IDEAS
    20. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    21. Nilotpal Sanyal & Marco A. R. Ferreira, 2017. "Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 361-388, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cofedp:0801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zfkonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.