IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i12p1871-1875.html
   My bibliography  Save this article

Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence

Author

Listed:
  • Wishart, Justin Rory

Abstract

In this paper, a lower bound is determined in the minimax sense for change point estimators of the first derivative of a regression function in the fractional white noise model. Similar minimax results presented previously in the area focus on change points in the derivatives of a regression function in the white noise model or consider estimation of the regression function in the presence of correlated errors.

Suggested Citation

  • Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1871-1875
    DOI: 10.1016/j.spl.2011.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211002501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yining, 2020. "Jump or kink: note on super-efficiency in segmented linear regression break-point estimation," LSE Research Online Documents on Economics 103488, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. E. Salcedo & R. F. Porto & S. Y. Roa & F. R. Momo, 2012. "A wavelet-based time-varying autoregressive model for non-stationary and irregular time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2313-2325, June.
    2. Sam Efromovich & Jiayi Wu, 2018. "Wavelet Analysis of Big Data Contaminated by Large Noise in an fMRI Study of Neuroplasticity," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1381-1402, December.
    3. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    4. Kovac, Arne & Silverman, Bernard W., 1998. "Extending the scope of wavelet regression methods by coefficient-dependent thresholding," Technical Reports 1998,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Cai, Zongwu & Ren, Yu & Yang, Bingduo, 2015. "A semiparametric conditional capital asset pricing model," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 117-126.
    6. Tanujit Dey & Kun Ho Kim & Chae Young Lim, 2018. "Bayesian time series regression with nonparametric modeling of autocorrelation," Computational Statistics, Springer, vol. 33(4), pages 1715-1731, December.
    7. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    8. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    9. Zhang, Shuanglin & Wong, Man-Yu & Zheng, Zhongguo, 2002. "Wavelet Threshold Estimation of a Regression Function with Random Design," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 256-284, February.
    10. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    11. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    12. repec:jss:jstsof:12:i08 is not listed on IDEAS
    13. Beran, Jan & Heiler, Mark A., 2008. "A nonparametric regression cross spectrum for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 684-714, April.
    14. Linyuan Li & Kewei Lu, 2013. "On rate-optimal nonparametric wavelet regression with long memory moving average errors," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 127-145, July.
    15. Chang, Xiao-Wen & Qu, Leming, 2004. "Wavelet estimation of partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 31-48, August.
    16. Beran, Jan & Heiler, Mark A., 2007. "Estimation of a nonparametric regression spectrum for multivariate time series," CoFE Discussion Papers 07/12, University of Konstanz, Center of Finance and Econometrics (CoFE).
    17. Gérard Kerkyacharian & Dominique Picard & Lucien Birgé & Peter Hall & Oleg Lepski & Enno Mammen & Alexandre Tsybakov & G. Kerkyacharian & D. Picard, 2000. "Thresholding algorithms, maxisets and well-concentrated bases," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 283-344, December.
    18. Madison Giacofci & Sophie Lambert-Lacroix & Franck Picard, 2018. "Minimax wavelet estimation for multisample heteroscedastic nonparametric regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 238-261, January.
    19. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    20. Lee, Kichun & Vidakovic, Brani, 2012. "Semi-supervised wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1681-1691.
    21. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1871-1875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.