IDEAS home Printed from https://ideas.repec.org/p/zbw/cfswop/199702.html
   My bibliography  Save this paper

Value-at-Risk-Limitstrukturen zur Steuerung und Begrenzung von Marktrisiken im Aktienbereich

Author

Listed:
  • Beeck, Helmut
  • Johanning, Lutz
  • Rudolph, Bernd

Abstract

Ein Value-at-Risk-Limit wird als DM-Betrag gekennzeichnet, der von den tatsächlichen Handelsverlusten innerhalb einer bestimmten Zeitdauer nur mit geringer Wahrscheinlichkeit überschritten werden darf. Da der Bankvorstand i.d.R. Jahres-Value-at-Risk-Limite beschließt, im Handelsbereich die Geschäfte aber für einen kurzfristigen - unterstellt wird ein eintägiger - Planungshorizont abgeschlossen werden, ist zu klären, wie Jahres-Limite in Tages-Limite umgerechnet und während des Jahres realisierte Gewinne und Verluste auf die Limite angerechnet werden können. Auf der Grundlage des Umrechnungsverfahrens nach der Quadratwurzel-T-Formel lassen sich drei Verfahren für die Ermittlung des Tages-Limits unterscheiden: 1. Realisierte Gewinne und Verluste werden nicht angerechnet (starres Limit). 2. Bei Verlusteintritt vermindert sich das Tages-Limit für die Restperiode, realisierte Gewinne machen Kürzungen rückgängig (Verlustbegrenzungslimit). 3. Tages-Limite werden um Gewinne und Verluste angepaßt, wodurch eine Erweiterung des Handlungsspielraumes möglich ist (dynamisches Limit). Die drei Limite werden in einem Simulationsmodell gegeneinander abgewogen, wobei unterstellt wird, ein Händler handle nur eine einzige Aktie und antizipiere in 55% der Fälle die Kursrichtung. Die Simulationsergebnisse sind bei den unterstellten Renditeprozessen (geometrische Brownsche Bewegung und reale Renditen von 77 deutschen Aktien für die Zeit vom 01.01.1974 bis 31.12.1995) weitgehend identisch. Das dynamische Limit produziert deutlich höhere durchschnittliche Ergebnisse als das starre Limit und das Verlustbegrenzungslimit. Überschreitungen des Jahres-Limits treten nur beim starren Verfahren auf, die Häufigkeit ist allerdings wesentlich geringer als die zulässige Wahrscheinlichkeit von 1 %.

Suggested Citation

  • Beeck, Helmut & Johanning, Lutz & Rudolph, Bernd, 1997. "Value-at-Risk-Limitstrukturen zur Steuerung und Begrenzung von Marktrisiken im Aktienbereich," CFS Working Paper Series 1997/02, Center for Financial Studies (CFS).
  • Handle: RePEc:zbw:cfswop:199702
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/78099/1/755485165.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    2. Christopher James, 1996. "RAROC Based Capital Budgeting and Performance Evaluation: A Case Study of Bank Capital Allocation," Center for Financial Institutions Working Papers 96-40, Wharton School Center for Financial Institutions, University of Pennsylvania.
    3. Bruce D. Grundy & Zvi Wiener, "undated". "The Analysis of VAR, Deltas and State Prices: A New Approach," Rodney L. White Center for Financial Research Working Papers 11-96, Wharton School Rodney L. White Center for Financial Research.
    4. Johanning Lutz, 1996. "Value-at-Risk-Modelle zur Ermittlung der bankaufsichtlichen Eigenkapitalunterlegung beim Marktrisiko im Handelsbereich," Zeitschrift für Bankrecht und Bankwirtschaft (ZBB) / Journal of Banking Law and Banking (JBB), RWS Verlag, vol. 8(4), pages 287-303, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Fontnouvelle, Patrick & Dejesus-Rueff, Virginia & Jordan, John S. & Rosengren, Eric S., 2006. "Capital and Risk: New Evidence on Implications of Large Operational Losses," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(7), pages 1819-1846, October.
    2. Judy Hsu & Kuo-An Li, 2013. "Performance assessments of Taiwan’s financial holding companies," Journal of Productivity Analysis, Springer, vol. 40(1), pages 137-151, August.
    3. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    4. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    5. Evangelos Vasileiou, 2022. "Inaccurate Value at Risk Estimations: Bad Modeling or Inappropriate Data?," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1155-1171, March.
    6. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    7. Vlaar, Peter J. G., 2000. "Value at risk models for Dutch bond portfolios," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1131-1154, July.
    8. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    9. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    10. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    11. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    12. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    13. Jose A. Lopez & Christian Walter, 1997. "Is implied correlation worth calculating? Evidence from foreign exchange options and historical data," Research Paper 9730, Federal Reserve Bank of New York.
    14. Stoughton, Neal M. & Zechner, Josef, 2007. "Optimal capital allocation using RAROC(TM) and EVA(R)," Journal of Financial Intermediation, Elsevier, vol. 16(3), pages 312-342, July.
    15. Kamila Sommer, 2014. "Fertility Choice in a Life Cycle Model with Idiosyncratic Uninsurable Earnings Risk," Finance and Economics Discussion Series 2014-32, Board of Governors of the Federal Reserve System (U.S.).
    16. Anil Bangia & Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Modeling Liquidity Risk, With Implications for Traditional Market Risk Measurement and Management," Center for Financial Institutions Working Papers 99-06, Wharton School Center for Financial Institutions, University of Pennsylvania.
    17. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    18. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    19. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    20. Inui, Koji & Kijima, Masaaki & Kitano, Atsushi, 2005. "VaR is subject to a significant positive bias," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 299-311, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:199702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ifkcfde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.