IDEAS home Printed from https://ideas.repec.org/p/yor/hectdg/19-20.html
   My bibliography  Save this paper

Estimating and Decomposing Conditional Average Treatment Effects: The Smoking Ban in England

Author

Listed:
  • Robson, M.;
  • Doran, T.;
  • Cookson, R.;

Abstract

We develop a practical method for estimating and decomposing conditional average treatment effects using locally-weighted regressions. We illustrate with an application to the smoking ban in England using a regression discontinuity design, based on Health Survey for England data. We estimate average treatment effects conditional on socioeconomic status and decompose these effects by smoking location. Results show, the ban had no effect on the level of active smoking, but significantly reduced average exposure to second-hand smoke among non-smokers by 1.38 hours per week. Our method reveals a complex relationship between socioeconomic status and the effect on passive smoking. Decomposition analysis shows that these effects stem primarily from exposure reductions in pubs, but also from workplace exposure reductions for high socioeconomic status individuals.

Suggested Citation

  • Robson, M.; & Doran, T.; & Cookson, R.;, 2019. "Estimating and Decomposing Conditional Average Treatment Effects: The Smoking Ban in England," Health, Econometrics and Data Group (HEDG) Working Papers 19/20, HEDG, c/o Department of Economics, University of York.
  • Handle: RePEc:yor:hectdg:19/20
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/hedg/workingpapers/1920.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minsu Chang & Sokbae Lee & Yoon‐Jae Whang, 2015. "Nonparametric tests of conditional treatment effects with an application to single‐sex schooling on academic achievements," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 307-346, October.
    2. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    3. John Tayu Lee & Stanton A Glantz & Christopher Millett, 2011. "Effect of Smoke-Free Legislation on Adult Smoking Behaviour in England in the 18 Months following Implementation," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-6, June.
    4. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    5. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    6. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    7. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    8. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    9. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. 'Agoston Reguly, 2021. "Heterogeneous Treatment Effects in Regression Discontinuity Designs," Papers 2106.11640, arXiv.org, revised Oct 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    2. Jeffrey M. Wooldridge, 2004. "Estimating average partial effects under conditional moment independence assumptions," CeMMAP working papers CWP03/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Gevrek, Z. Eylem & Seiberlich, Ruben R., 2014. "Semiparametric decomposition of the gender achievement gap: An application for Turkey," Labour Economics, Elsevier, vol. 31(C), pages 27-44.
    5. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    6. Timothy B. Armstrong & Michal Kolesár, 2021. "Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
    7. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    8. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    9. Draheim, Matthias & Schanbacher, Peter & Seiberlich, Ruben, 2021. "On the effectiveness of case management for people with disabilities," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 55, pages 1-15.
    10. Advani, Arun & Sloczynski, Tymon, 2013. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 7874, Institute of Labor Economics (IZA).
    11. Pohlmeier, Winfried & Seiberlich, Ruben & Uysal, Selver Derya, 2016. "A simple and successful shrinkage method for weighting estimators of treatment effects," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 512-525.
    12. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    13. Zongwu Cai & Ying Fang & Ming Lin & Yaqian Wu, 2024. "Estimating Counterfactual Distribution Functions via Optimal Distribution Balancing with Applications," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202415, University of Kansas, Department of Economics.
    14. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    15. Christl, Michael & Köppl-Turyna, Monika & Gnan, Phillipp, 2017. "Wage Differences Between Immigrants and Natives in Austria: The Role of Literacy Skills," GLO Discussion Paper Series 145, Global Labor Organization (GLO).
    16. Bryan S. Graham & Cristine Campos de Xavier Pinto & Daniel Egel, 2016. "Efficient Estimation of Data Combination Models by the Method of Auxiliary-to-Study Tilting (AST)," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 288-301, April.
    17. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    18. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    19. Brantly Callaway & Weige Huang, 2020. "Distributional Effects of a Continuous Treatment with an Application on Intergenerational Mobility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 808-842, August.
    20. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.

    More about this item

    Keywords

    health inequality; equity; conditional average treatment effects; regression discontinuity; heterogeneity; smoking ban; lwcate;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • I14 - Health, Education, and Welfare - - Health - - - Health and Inequality
    • I38 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Government Programs; Provision and Effects of Welfare Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:hectdg:19/20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jane Rawlings (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.