IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v18y2015i3p307-346.html
   My bibliography  Save this article

Nonparametric tests of conditional treatment effects with an application to single‐sex schooling on academic achievements

Author

Listed:
  • Minsu Chang
  • Sokbae Lee
  • Yoon‐Jae Whang

Abstract

We develop a general class of nonparametric tests for treatment effects conditional on covariates. We consider a wide spectrum of null hypotheses regarding conditional treatment effects, including the following: (a) the null hypothesis of the conditional stochastic dominance between treatment and control groups; (b) the null hypothesis that the conditional average treatment effect is nonpositive for each value of covariates; (c) the null hypothesis of no distributional (or average) treatment effect conditional on covariates. The test statistics are based on L 1 ‐type functionals of uniformly consistent nonparametric kernel estimators of conditional expectations that characterize the null hypotheses. We show that our tests using the standard normal critical values have asymptotically correct size. We also show that the proposed nonparametric tests are consistent against general fixed alternatives and have non‐negligible powers against some n − 1 / 2 local alternatives to the null hypothesis with inequality constraints and n − 1 / 2 h − d / 4 local alternatives to the null hypothesis with equality constraints, where h is a bandwidth, n is the sample size and d is the dimension of continuous covariates. We illustrate the usefulness of our tests by applying them to the effect of single‐sex schooling on academic achievements using Korean data.

Suggested Citation

  • Minsu Chang & Sokbae Lee & Yoon‐Jae Whang, 2015. "Nonparametric tests of conditional treatment effects with an application to single‐sex schooling on academic achievements," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 307-346, October.
  • Handle: RePEc:wly:emjrnl:v:18:y:2015:i:3:p:307-346
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ectj.12050
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Cai & Weinan Wang, 2022. "A Systematic Paradigm for Detecting, Surfacing, and Characterizing Heterogeneous Treatment Effects (HTE)," Papers 2211.01547, arXiv.org.
    2. Pedro H. C. Sant’Anna, 2021. "Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 816-832, July.
    3. Sungwon Lee, 2021. "Partial Identification and Inference for Conditional Distributions of Treatment Effects," Papers 2108.00723, arXiv.org, revised Nov 2023.
    4. Beare, Brendan K. & Shi, Xiaoxia, 2019. "An improved bootstrap test of density ratio ordering," Econometrics and Statistics, Elsevier, vol. 10(C), pages 9-26.
    5. Zhou, Niwen & Guo, Xu & Zhu, Lixing, 2024. "Significance test for semiparametric conditional average treatment effects and other structural functions," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    6. Robson, M.; & Doran, T.; & Cookson, R.;, 2019. "Estimating and Decomposing Conditional Average Treatment Effects: The Smoking Ban in England," Health, Econometrics and Data Group (HEDG) Working Papers 19/20, HEDG, c/o Department of Economics, University of York.
    7. Shi, Chengchun & Lu, Wenbin & Song, Rui, 2019. "A sparse random projection-based test for overall qualitative treatment effects," LSE Research Online Documents on Economics 102107, London School of Economics and Political Science, LSE Library.
    8. Julius Owusu, 2024. "A Nonparametric Test of Heterogeneous Treatment Effects under Interference," Papers 2410.00733, arXiv.org.
    9. Linbo Wang & James M. Robins & Thomas S. Richardson, 2017. "On falsification of the binary instrumental variable model," Biometrika, Biometrika Trust, vol. 104(1), pages 229-236.
    10. Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:18:y:2015:i:3:p:307-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.