IDEAS home Printed from https://ideas.repec.org/p/wsu/wpaper/sgalinato-2.html
   My bibliography  Save this paper

The Economic Value of Biochar in Crop Production and Carbon Sequestration

Author

Listed:
  • Suzette P. Galinato
  • Jonathan K. Yoder
  • David Granatstein

    (School of Economic Sciences, Washington State University)

Abstract

This paper estimates the economic value of biochar application on agricultural cropland for carbon sequestration and its soil amendment properties. In particular, we consider the carbon emissions avoided when biochar is applied to agricultural soil, instead of agricultural lime, the amount of carbon sequestered, and the value of carbon offsets, assuming there is an established carbon trading mechanism for biochar soil application. We use winter wheat production in Eastern Whitman County, Washington as a case study, and consider different carbon offset price scenarios and different prices of biochar to estimate a farm profit. Our findings suggest that it may be profitable to apply biochar as a soil amendment under some conditions if the biochar market price is low enough and/or a carbon offset market exists.

Suggested Citation

  • Suzette P. Galinato & Jonathan K. Yoder & David Granatstein, 2010. "The Economic Value of Biochar in Crop Production and Carbon Sequestration," Working Papers 2010-3, School of Economic Sciences, Washington State University.
  • Handle: RePEc:wsu:wpaper:sgalinato-2
    as

    Download full text from publisher

    File URL: http://faculty.ses.wsu.edu/WorkingPapers/sgalinato/WP_2010-03.pdf
    File Function: First version, 2010
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koenig, P., 2011. "Modelling Correlation in Carbon and Energy Markets," Cambridge Working Papers in Economics 1123, Faculty of Economics, University of Cambridge.
    2. Philipp Koenig, 2011. "Modelling Correlation in Carbon and Energy Markets," Working Papers EPRG 1107, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    4. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    5. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lydia Fryda & Rianne Visser, 2015. "Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis," Agriculture, MDPI, vol. 5(4), pages 1-40, November.
    2. Maggen, Jens & Carleer, Robert & Yperman, Jan & De Vocht, Alain & Schreurs, Sonja & Reggers, Guy & Thijsen, Elsy, 2017. "Biochar Derived from the Dry, Solid Fraction of Pig Manure as Potential Fertilizer for Poor and Contaminated Soils," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 6(2), May.
    3. Badgujar, Kirtikumar C. & Wilson, Lee D. & Bhanage, Bhalchandra M., 2019. "Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 266-284.
    4. Otte, Pia Piroschka & Vik, Jostein, 2017. "Biochar systems: Developing a socio-technical system framework for biochar production in Norway," Technology in Society, Elsevier, vol. 51(C), pages 34-45.
    5. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
    7. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    8. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    9. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    10. Taras Lychuk & Roberto Izaurralde & Robert Hill & William McGill & Jimmy Williams, 2015. "Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1437-1458, December.
    11. You, Siming & Tong, Huanhuan & Armin-Hoiland, Joel & Tong, Yen Wah & Wang, Chi-Hwa, 2017. "Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia," Applied Energy, Elsevier, vol. 208(C), pages 495-510.
    12. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Wang, Wei-Cheng, 2016. "Techno-economic analysis of a bio-refinery process for producing Hydro-processed Renewable Jet fuel from Jatropha," Renewable Energy, Elsevier, vol. 95(C), pages 63-73.
    14. Ng, Wei Cheng & You, Siming & Ling, Ran & Gin, Karina Yew-Hoong & Dai, Yanjun & Wang, Chi-Hwa, 2017. "Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis," Energy, Elsevier, vol. 139(C), pages 732-742.
    15. Britta Bergfeldt & Marco Tomasi Morgano & Hans Leibold & Frank Richter & Dieter Stapf, 2018. "Recovery of Phosphorus and other Nutrients during Pyrolysis of Chicken Manure," Agriculture, MDPI, vol. 8(12), pages 1-10, November.
    16. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    17. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    18. Brown, Tristan R. & Thilakaratne, Rajeeva & Brown, Robert C. & Hu, Guiping, 2013. "Regional differences in the economic feasibility of advanced biorefineries: Fast pyrolysis and hydroprocessing," Energy Policy, Elsevier, vol. 57(C), pages 234-243.
    19. Campbell, Robert M. & Anderson, Nathaniel M. & Daugaard, Daren E. & Naughton, Helen T., 2018. "Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 330-343.
    20. Berazneva, Julia & Woolf, Dominic & Lee, David R., 2021. "Local lignocellulosic biofuel and biochar co-production in Sub-Saharan Africa: The role of feedstock provision in economic viability," Energy Economics, Elsevier, vol. 93(C).
    21. Valeria Lavagi & Jonathan Kaplan & Georgios Vidalakis & Michelle Ortiz & Michael V. Rodriguez & Madison Amador & Francesca Hopkins & Samantha Ying & Deborah Pagliaccia, 2024. "Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nurse," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
    22. Mohammadi, Ali & Cowie, Annette L. & Cacho, Oscar & Kristiansen, Paul & Anh Mai, Thi Lan & Joseph, Stephen, 2017. "Biochar addition in rice farming systems: Economic and energy benefits," Energy, Elsevier, vol. 140(P1), pages 415-425.
    23. Francisco Miguel González-Pernas & Cristina Grajera-Antolín & Olivia García-Cámara & María González-Lucas & María Teresa Martín & Sergio González-Egido & Juan Luis Aguirre, 2022. "Effects of Biochar on Biointensive Horticultural Crops and Its Economic Viability in the Mediterranean Climate," Energies, MDPI, vol. 15(9), pages 1-16, May.
    24. Simeng Li & Gang Chen, 2020. "Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: present and future," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2703-2741, April.
    25. Kong, Sieng-Huat & Loh, Soh-Kheang & Bachmann, Robert Thomas & Rahim, Sahibin Abdul & Salimon, Jumat, 2014. "Biochar from oil palm biomass: A review of its potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 729-739.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Koch, 2014. "Dynamic linkages among carbon, energy and financial markets: a smooth transition approach," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 715-729, March.
    2. Green, Rikard & Larsson, Karl & Lunina, Veronika & Nilsson, Birger, 2018. "Cross-commodity news transmission and volatility spillovers in the German energy markets," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 231-243.
    3. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    4. Themistoclis Pantos & Stathis Polyzos & Aggelos Armenatzoglou & Ilias Kampouris, 2019. "Volatility Spillovers in Electricity Markets: Evidence from the United States," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 131-143.
    5. repec:eco:journ1:2014-03-21 is not listed on IDEAS
    6. Ren� Carmona & Michael Coulon & Daniel Schwarz, 2012. "The valuation of clean spread options: linking electricity, emissions and fuels," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1951-1965, December.
    7. Michael G. Pollitt, 2019. "The European Single Market in Electricity: An Economic Assessment," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 55(1), pages 63-87, August.
    8. Rowan Adams & Tooraj Jamasb, 2016. "Optimal Power Generation Portfolios with Renewables: An Application to the UK," Working Papers EPRG 1620, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Su, Guangcan & Mohd Zulkifli, Nurin Wahidah & Ong, Hwai Chyuan & Ibrahim, Shaliza & Bu, Quan & Zhu, Ruonan, 2022. "Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Yu, Jongmin & Mallory, Mindy L., 2014. "Exchange rate effect on carbon credit price via energy markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 145-161.
    11. Oscar Carchano & Vicente Medina Martínez & Ángel Pardo Tornero, 2012. "Rolling over EUAs and CERs," Working Papers. Serie AD 2012-15, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    12. Kong, Sieng-Huat & Loh, Soh-Kheang & Bachmann, Robert Thomas & Rahim, Sahibin Abdul & Salimon, Jumat, 2014. "Biochar from oil palm biomass: A review of its potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 729-739.
    13. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    14. Lizhen Qin & Donghoon Shin, 2023. "Effects of UV Light Treatment on Functional Group and Its Adsorption Capacity of Biochar," Energies, MDPI, vol. 16(14), pages 1-14, July.
    15. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    16. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    17. Emilie Alberola & Julien Chevallier & Benoît Chèze, 2008. "The EU Emissions Trading Scheme : Disentangling the Effects of Industrial Production and CO2 Emissions on Carbon Prices," Working Papers hal-04140795, HAL.
    18. Lybbert, Travis & Sumner, Daniel, 2010. "Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion," Climate Change 320104, International Centre for Trade and Sustainable Development (ICTSD).
    19. Ana Castro & Nilcileny Da Silva Batista & Agnieszka E. Latawiec & Aline Rodrigues & Bernardo Strassburg & Daniel Silva & Ednaldo Araujo & Luiz Fernando D. De Moraes & Jose Guilherme Guerra & Gabriel G, 2018. "The Effects of Gliricidia -Derived Biochar on Sequential Maize and Bean Farming," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    20. Audrey Laude & Christian Jonen, 2011. "Biomass and CCS: The influence of the learning effect," Working Papers halshs-00829779, HAL.
    21. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).

    More about this item

    Keywords

    Biochar; Carbon sequestration; Crop; Farm profitability; Soil amendment;
    All these keywords.

    JEL classification:

    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsu:wpaper:sgalinato-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Danielle Engelhardt (email available below). General contact details of provider: https://edirc.repec.org/data/ecwsuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.