IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6070-d1436318.html
   My bibliography  Save this article

Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nursery Production

Author

Listed:
  • Valeria Lavagi

    (Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92507, USA)

  • Jonathan Kaplan

    (Department of Economics, California State University, Sacramento, CA 95819, USA
    These authors contributed equally to this work.)

  • Georgios Vidalakis

    (Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92507, USA)

  • Michelle Ortiz

    (Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92507, USA)

  • Michael V. Rodriguez

    (Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA)

  • Madison Amador

    (Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92507, USA)

  • Francesca Hopkins

    (Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA)

  • Samantha Ying

    (Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA)

  • Deborah Pagliaccia

    (Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92507, USA
    These authors contributed equally to this work.)

Abstract

Applying bokashi (Bok) at 10% volume/volume ( v / v ), biochar (BC) at 10% v / v , and their combination (Bok_BC) as soil amendments significantly enhances citrus nursery production, improving plant growth and soil health, alongside offering notable economic benefits. Our greenhouse experiment evaluated these treatments across two fertilizer doses, at half (700 μS/cm) and full (1400 μS/cm) electrical conductivity (EC) levels, compared to a control mix, demonstrating improved nutrient availability, water retention, growth rates, and potential for carbon sequestration. Based on the results of this experiment, a cost–benefit analysis was performed; the BC treatment yielded substantial savings, particularly in large nurseries where BC at 700 μS/cm electrical conductivity (EC) saved USD 1356.38 per day and the same treatment at 1400 μS/cm EC saved USD 1857.53. These savings stem from increased nutrient contents (N, P, and K) and improved water retention, reducing irrigation; shortened growth cycles due to enhanced growth rates were observed, indirectly suggesting reduced electricity costs for greenhouse operations. Additionally, the increased carbon content within the soil points toward long-term benefits from carbon sequestration, further contributing to the sustainability and economic viability of these practices. These findings highlight the economic advantage of incorporating Bok and BC into soil mixes, providing a cost-effective strategy for enhancing greenhouse agriculture sustainability.

Suggested Citation

  • Valeria Lavagi & Jonathan Kaplan & Georgios Vidalakis & Michelle Ortiz & Michael V. Rodriguez & Madison Amador & Francesca Hopkins & Samantha Ying & Deborah Pagliaccia, 2024. "Recycling Agricultural Waste to Enhance Sustainable Greenhouse Agriculture: Analyzing the Cost-Effectiveness and Agronomic Benefits of Bokashi and Biochar Byproducts as Soil Amendments in Citrus Nurse," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6070-:d:1436318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shakeel Ahmad Bhat & Alban Kuriqi & Mehraj U. Din Dar & Owais Bhat & Saad Sh. Sammen & Abu Reza Md. Towfiqul Islam & Ahmed Elbeltagi & Owais Shah & Nadhir AI-Ansari & Rawshan Ali & Salim Heddam, 2022. "Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    2. Galinato, Suzette P. & Yoder, Jonathan K. & Granatstein, David, 2011. "The economic value of biochar in crop production and carbon sequestration," Energy Policy, Elsevier, vol. 39(10), pages 6344-6350, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Britt Moore, 2023. "Challenges and Opportunities for Cover Crop Mediated Soil Water Use Efficiency Enhancements in Temperate Rain-Fed Cropping Systems: A Review," Land, MDPI, vol. 12(5), pages 1-14, April.
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Francisco Miguel González-Pernas & Cristina Grajera-Antolín & Olivia García-Cámara & María González-Lucas & María Teresa Martín & Sergio González-Egido & Juan Luis Aguirre, 2022. "Effects of Biochar on Biointensive Horticultural Crops and Its Economic Viability in the Mediterranean Climate," Energies, MDPI, vol. 15(9), pages 1-16, May.
    4. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    5. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    6. Taras Lychuk & Roberto Izaurralde & Robert Hill & William McGill & Jimmy Williams, 2015. "Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1437-1458, December.
    7. Mohammadi, Ali & Cowie, Annette L. & Cacho, Oscar & Kristiansen, Paul & Anh Mai, Thi Lan & Joseph, Stephen, 2017. "Biochar addition in rice farming systems: Economic and energy benefits," Energy, Elsevier, vol. 140(P1), pages 415-425.
    8. You, Siming & Tong, Huanhuan & Armin-Hoiland, Joel & Tong, Yen Wah & Wang, Chi-Hwa, 2017. "Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia," Applied Energy, Elsevier, vol. 208(C), pages 495-510.
    9. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Ng, Wei Cheng & You, Siming & Ling, Ran & Gin, Karina Yew-Hoong & Dai, Yanjun & Wang, Chi-Hwa, 2017. "Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis," Energy, Elsevier, vol. 139(C), pages 732-742.
    11. Berazneva, Julia & Woolf, Dominic & Lee, David R., 2021. "Local lignocellulosic biofuel and biochar co-production in Sub-Saharan Africa: The role of feedstock provision in economic viability," Energy Economics, Elsevier, vol. 93(C).
    12. Lydia Fryda & Rianne Visser, 2015. "Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis," Agriculture, MDPI, vol. 5(4), pages 1-40, November.
    13. Maggen, Jens & Carleer, Robert & Yperman, Jan & De Vocht, Alain & Schreurs, Sonja & Reggers, Guy & Thijsen, Elsy, 2017. "Biochar Derived from the Dry, Solid Fraction of Pig Manure as Potential Fertilizer for Poor and Contaminated Soils," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 6(2), May.
    14. Badgujar, Kirtikumar C. & Wilson, Lee D. & Bhanage, Bhalchandra M., 2019. "Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 266-284.
    15. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
    16. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    17. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    18. Yeganeh Arablousabet & Arvydas Povilaitis, 2024. "Assessing the Role of Air Nanobubble-Saturated Water in Enhancing Soil Moisture, Nutrient Retention, and Plant Growth," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    19. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Mohammad Ghorbani & Elnaz Amirahmadi & Reinhard W. Neugschwandtner & Petr Konvalina & Marek Kopecký & Jan Moudrý & Kristýna Perná & Yves Theoneste Murindangabo, 2022. "The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties," Sustainability, MDPI, vol. 14(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6070-:d:1436318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.