IDEAS home Printed from https://ideas.repec.org/p/wrk/warwec/869.html
   My bibliography  Save this paper

Rounding of probability forecasts : The SPF forecast probabilities of negative output growth

Author

Listed:
  • Clements, Michael P.

    (Department of Economics,University of Warwick)

Abstract

We consider the possibility that respondents to the Survey of Professional Forecasters round their probability forecasts of the event that real output will decline in the future. We make various assumptions about how forecasters round their forecasts, including that individuals have constant patterns of responses across forecasts. Our primary interests are the impact of rounding on assessments of the internal consistency of the probability forecasts of a decline in real output and the histograms for annual real output growth, and on the relationship between the probability forecasts and the point forecasts of quarterly output growth.

Suggested Citation

  • Clements, Michael P., 2008. "Rounding of probability forecasts : The SPF forecast probabilities of negative output growth," The Warwick Economics Research Paper Series (TWERPS) 869, University of Warwick, Department of Economics.
  • Handle: RePEc:wrk:warwec:869
    as

    Download full text from publisher

    File URL: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/2008/twerp_869.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    2. Clements, Michael P, 2006. "Internal consistency of survey respondents.forecasts : Evidence based on the Survey of Professional Forecasters," The Warwick Economics Research Paper Series (TWERPS) 772, University of Warwick, Department of Economics.
    3. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    4. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    5. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    6. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    7. Hsiao,Cheng & Pesaran,M. Hashem & Lahiri,Kajal & Lee,Lung Fei (ed.), 1999. "Analysis of Panels and Limited Dependent Variable Models," Cambridge Books, Cambridge University Press, number 9780521631693, October.
    8. Kajal Lahiri, 2005. "Analysis of Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1093-1095.
    9. Francis X. Diebold & Anthony S. Tay & Kenneth F. Wallis, 1997. "Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters," NBER Working Papers 6228, National Bureau of Economic Research, Inc.
    10. Clements, Michael P., 2008. "Consensus and uncertainty: Using forecast probabilities of output declines," International Journal of Forecasting, Elsevier, vol. 24(1), pages 76-86.
    11. Rich, Robert W & Butler, J S, 1998. "Disagreement as a Measure of Uncertainty: A Comment on Bomberger," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 30(3), pages 411-419, August.
    12. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    13. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    14. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    15. Bomberger, William A, 1996. "Disagreement as a Measure of Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(3), pages 381-392, August.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Zarnowitz, Victor, 1985. "Rational Expectations and Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 293-311, October.
    18. Michael Clements, 2006. "Evaluating the survey of professional forecasters probability distributions of expected inflation based on derived event probability forecasts," Empirical Economics, Springer, vol. 31(1), pages 49-64, March.
    19. Manski, Charles F. & Molinari, Francesca, 2010. "Rounding Probabilistic Expectations in Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 219-231.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    2. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    3. Clements, Michael P, 2012. "Subjective and Ex Post Forecast Uncertainty : US Inflation and Output Growth," The Warwick Economics Research Paper Series (TWERPS) 995, University of Warwick, Department of Economics.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    6. Kajal Lahiri & Fushang Liu, 2006. "ARCH Models for Multi-period Forecast Uncertainty: A Reality Check Using a Panel of Density Forecasts," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 321-363, Emerald Group Publishing Limited.
    7. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    8. Kajal Lahiri & Fushang Liu, 2006. "Modelling multi‐period inflation uncertainty using a panel of density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1199-1219, December.
    9. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    10. Clements, Michael P., 2008. "Consensus and uncertainty: Using forecast probabilities of output declines," International Journal of Forecasting, Elsevier, vol. 24(1), pages 76-86.
    11. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    12. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.
    13. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
    14. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    15. Michael P. Clements, 2011. "An Empirical Investigation of the Effects of Rounding on the SPF Probabilities of Decline and Output Growth Histograms," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(1), pages 207-220, February.
    16. Svetlana Makarova, 2014. "Risk and Uncertainty: Macroeconomic Perspective," UCL SSEES Economics and Business working paper series 129, UCL School of Slavonic and East European Studies (SSEES).
    17. Harvey, David I. & Newbold, Paul, 2003. "The non-normality of some macroeconomic forecast errors," International Journal of Forecasting, Elsevier, vol. 19(4), pages 635-653.
    18. repec:spo:wpecon:info:hdl:2441/f4rshpf3v1umfa09lat09b1bg is not listed on IDEAS
    19. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    20. Clements, Michael P., 2014. "Probability distributions or point predictions? Survey forecasts of US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 99-117.
    21. Croushore Dean, 2010. "An Evaluation of Inflation Forecasts from Surveys Using Real-Time Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, May.

    More about this item

    Keywords

    Rounding ; probability forecasts ; probability distributions;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Margaret Nash (email available below). General contact details of provider: https://edirc.repec.org/data/dewaruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.