Evaluation of the Distribution Function of the Two-Stage Least Squares Estimate
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anderson, T.W. & Kunitomo, Naoto & Matsushita, Yukitoshi, 2011. "On finite sample properties of alternative estimators of coefficients in a structural equation with many instruments," Journal of Econometrics, Elsevier, vol. 165(1), pages 58-69.
- Markus Frölich & Michael Lechner, 2004.
"Regional treatment intensity as an instrument for the evaluation of labour market policies,"
University of St. Gallen Department of Economics working paper series 2004
2004-08, Department of Economics, University of St. Gallen.
- Frölich, Markus & Lechner, Michael, 2004. "Regional Treatment Intensity as an Instrument for the Evaluation of Labour Market Policies," IZA Discussion Papers 1095, Institute of Labor Economics (IZA).
- Lechner, Michael & Fröhlich, Markus, 2004. "Regional Treatment Intensity as an Instrument for the Evaluation of Labour Market Policies," CEPR Discussion Papers 4304, C.E.P.R. Discussion Papers.
- Kleibergen, Frank & Zivot, Eric, 2003.
"Bayesian and classical approaches to instrumental variable regression,"
Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
- Frank Kleibergen & Eric Zivot, 1998. "Bayesian and Classical Approaches to Instrumental Variable Regression," Working Papers 0063, University of Washington, Department of Economics.
- Frank Kleibergen & Eric Zivot, 2003. "Bayesian and Classical Approaches to Instrumental Variable Regression," Working Papers UWEC-2002-21-P, University of Washington, Department of Economics.
- Frank Kleibergen & Eric Zivot, 1998. "Bayesian and Classical Approaches to Instrumental Variable Regression," Discussion Papers in Economics at the University of Washington 0063, Department of Economics at the University of Washington.
- Kleibergen, F.R. & Zivot, E., 1998. "Bayesian and classical approaches to instrumental variable regression," Econometric Institute Research Papers EI 9835, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Frank Kleibergen & Eric Zivot, 1998. "Bayesian and Classical Approaches to Instrumental Variables Regression," Econometrics 9812002, University Library of Munich, Germany.
- Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
- Andreou, E. & Werker, B.J.M., 2004. "An Alternative Asymptotic Analysis of Residual-Based Statistics," Discussion Paper 2004-56, Tilburg University, Center for Economic Research.
- Linton, Oliver, 1997.
"An Asymptotic Expansion in the GARCH(l, 1) Model,"
Econometric Theory, Cambridge University Press, vol. 13(4), pages 558-581, February.
- Oliver Linton, 1996. "An Asymptotic Expansion in the Garch(1,1) Model," Cowles Foundation Discussion Papers 1118, Cowles Foundation for Research in Economics, Yale University.
- Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
- Andreou, E. & Werker, B.J.M., 2004. "An Alternative Asymptotic Analysis of Residual-Based Statistics," Other publications TiSEM 93fe16c1-9f21-4dab-9b73-4, Tilburg University, School of Economics and Management.
- James H. Stock & Jonathan Wright, 1996. "Asymptotics for GMM Estimators with Weak Instruments," NBER Technical Working Papers 0198, National Bureau of Economic Research, Inc.
- D. S. Poskitt & C. L. Skeels, 2005.
"Small Concentration Asymptotics and Instrumental Variables Inference,"
Monash Econometrics and Business Statistics Working Papers
4/05, Monash University, Department of Econometrics and Business Statistics.
- D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
- Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
- Naoto Kunitomo, 1979. "Asymptotic Optimality of the Limited Information Maximum Likelihood Estimator in Large Econometric Models," Discussion Papers 503, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Gao, Chuanming & Lahiri, Kajal, 2000. "Further consequences of viewing LIML as an iterated Aitken estimator," Journal of Econometrics, Elsevier, vol. 98(2), pages 187-202, October.
- Naoto Kunitomo, 1981. "A Third Order Optimum Property of the ML Estimator in Linear Functional Relationships and Simultaneous Equation Systems," Discussion Papers 501, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Annette Vissing-Jorgensen, 2002.
"Limited Asset Market Participation and the Elasticity of Intertemporal Substitution,"
Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 825-853, August.
- Annette Vissing-Jorgensen, 2002. "Limited Asset Market Participation and the Elasticity of Intertemporal Substitution," NBER Working Papers 8896, National Bureau of Economic Research, Inc.
- Miaojie Yu, 2005. "Impact of U.S. Tariffs on Democratic Vote Share," International Trade 0511001, University Library of Munich, Germany.
- Douglas Staiger & James H. Stock, 1997.
"Instrumental Variables Regression with Weak Instruments,"
Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
- Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
- Oliver Linton, 1997. "Second Order Approximation in a Linear Regression with Heteroskedasticity for Unknown Form," Cowles Foundation Discussion Papers 1151, Cowles Foundation for Research in Economics, Yale University.
- D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
- Oberhelman, Dennis & Rao Kadiyala, K., 2000. "Asymptotic probability concentrations and finite sample properties of modified LIML estimators for equations with more than two endogenous variables," Journal of Econometrics, Elsevier, vol. 98(1), pages 163-185, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:47:y:1979:i:1:p:163-82. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.