Spectral Decomposition of Option Prices in Fast Mean-Reverting Stochastic Volatility Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Antoon Pelsser, 2000. "Pricing double barrier options using Laplace transforms," Finance and Stochastics, Springer, vol. 4(1), pages 95-104.
- Eric Hillebrand, 2005. "Overlaying Time Scales in Financial Volatility Data," Econometrics 0501015, University Library of Munich, Germany.
- Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv.
- Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
- Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Vadim Linetsky, 2004. "The Spectral Decomposition Of The Option Value," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 337-384.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
- Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
- Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
- Minqiang Li, 2015.
"Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
- Li, Minqiang, 2014. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," MPRA Paper 54595, University Library of Munich, Germany.
- Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
- Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
- Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010.
"Valuation equations for stochastic volatility models,"
Papers
1004.3299, arXiv.org, revised Dec 2011.
- Bayraktar, Erhan & Kardaras, Constantinos & Xing, Hao, 2012. "Valuation equations for stochastic volatility models," LSE Research Online Documents on Economics 43460, London School of Economics and Political Science, LSE Library.
- Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
- Tim Leung & Hyungbin Park, 2017.
"LONG-TERM GROWTH RATE OF EXPECTED UTILITY FOR LEVERAGED ETFs: MARTINGALE EXTRACTION APPROACH,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-33, September.
- Tim Leung & Hyungbin Park, 2016. "Long-Term Growth Rate of Expected Utility for Leveraged ETFs: Martingale Extraction Approach," Papers 1612.01013, arXiv.org.
- Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
- Kristensen, Dennis & Mele, Antonio, 2011.
"Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models,"
Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
- Dennis Kristensen & Antonio Mele, 2009. "Adding and Subtracting Black-Scholes: A New Approach to Approximating Derivative Prices in Continuous Time Models," CREATES Research Papers 2009-14, Department of Economics and Business Economics, Aarhus University.
- R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
- Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
- Matthew Lorig, 2011. "Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach," Papers 1109.0738, arXiv.org, revised Apr 2012.
- Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
- Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
- Peter Christoffersen & Steven Heston & Kris Jacobs, 2009.
"The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well,"
Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
- Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well," CREATES Research Papers 2009-34, Department of Economics and Business Economics, Aarhus University.
- Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
- Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2010-08-06 (Econometric Time Series)
- NEP-ORE-2010-08-06 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1007.4361. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.