IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0307007.html
   My bibliography  Save this paper

Strongly Consistent Determination of the Rank of Matrix

Author

Listed:
  • Zaka Ratsimalahelo

    (University of Franche-Comté)

Abstract

In this paper, we develop methods of the determination of the rank of random matrix. Using the matrix perturbation theory to construct or find a suitable bases of the kernel (null space) of the matrix and to determine the limiting distribution of the estimator of the smallest singular values. We propose a new rank test for an unobserved matrix for which a root-N-consistent estimator is available and construct a Wald- type test statistic (generalized Wald test). The test, based on matrix perturbation theory, enable to determine how many singular values of the estimated matrix are insignificantly different from zero and we fully characterise the asymptotic distribution of the generalized Wald statistic under the most general conditions. We show that it is chi- square distribution under the null. In particular case, when the asymptotic covariance matrix has a Kronecker product form, the test statistic is equivalent to likelihood ratio test statistic and to Multiplier Lagrange test statistic. Two approaches to be considered are sequential testing strategy and information theoretic criterion. We establish a strongly consistent of the determination of the rank of matrix using the two approaches.

Suggested Citation

  • Zaka Ratsimalahelo, 2003. "Strongly Consistent Determination of the Rank of Matrix," Econometrics 0307007, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0307007
    Note: Type of Document - Acrobat PDF ; prepared on PC, Scientific- Workplace; to print on HP/PostScript/; pages: 36 ; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0307/0307007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    2. Anderson, T. W., 1999. "Asymptotic Theory for Canonical Correlation Analysis," Journal of Multivariate Analysis, Elsevier, vol. 70(1), pages 1-29, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos A. Rangel & Duncan Thomas, 2019. "Decision-Making in Complex Households," Working Papers 2019-070, Human Capital and Economic Opportunity Working Group.
    2. Marcos Rangel & Duncan Thomas, 2019. "Decision-Making in Complex Households," NBER Working Papers 26511, National Bureau of Economic Research, Inc.
    3. Thomas, Duncan & Rangel, Marcos, 2020. "Decision-Making in Complex Households," CEPR Discussion Papers 14278, C.E.P.R. Discussion Papers.
    4. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2007. "On Rank Estimation In Symmetric Matrices: The Case Of Indefinite Matrix Estimators," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1217-1232, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaka Ratsimalahelo, 2003. "Strongly Consistent Determination of the Rank of Matrix," EERI Research Paper Series EERI_RP_2003_04, Economics and Econometrics Research Institute (EERI), Brussels.
    2. Bura, Efstathia & Cook, R. Dennis, 2003. "Rank estimation in reduced-rank regression," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 159-176, October.
    3. Satorra, Albert & Neudecker, Heinz, 1997. "Compact Matrix Expressions for Generalized Wald Tests of Equality of Moment Vectors, ," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 259-276, November.
    4. Caner, Mehmet & Yıldız, Neşe, 2012. "CUE with many weak instruments and nearly singular design," Journal of Econometrics, Elsevier, vol. 170(2), pages 422-441.
    5. Smaga, Łukasz, 2015. "Wald-type statistics using {2}-inverses for hypothesis testing in general factorial designs," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 215-220.
    6. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    7. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.
    8. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    9. Gilbert, Scott & Zemcík, Petr, 2006. "Who's afraid of reduced-rank parameterizations of multivariate models? Theory and example," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 925-945, April.
    10. Peter C. B. Phillips, 2022. "Asymptotics of Polynomial Time Trend Estimation and Hypothesis Testing under Rank Deficiency," Cowles Foundation Discussion Papers 2332, Cowles Foundation for Research in Economics, Yale University.
    11. Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
    12. Albert Satorra & Heinz Neudecker, 2015. "A Theorem on the Rank of a Product of Matrices with Illustration of Its Use in Goodness of Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 938-948, December.
    13. Kim, Jinyong & Kim, Kun Ho & Lee, Jeong Hwan, 2021. "Cross-sectional tests of asset pricing models with full-rank mimicking portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    14. Christoph Breunig & Stefan Hoderlein, 2016. "Nonparametric Specification Testing in Random Parameter Models," Boston College Working Papers in Economics 897, Boston College Department of Economics.
    15. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    16. Christoph Breunig & Stefan Hoderlein, 2018. "Specification testing in random coefficient models," Quantitative Economics, Econometric Society, vol. 9(3), pages 1371-1417, November.
    17. Komunjer, Ivana & Zhu, Yinchu, 2020. "Likelihood ratio testing in linear state space models: An application to dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 218(2), pages 561-586.
    18. Duplinskiy, A., 2014. "Is regularization necessary? A Wald-type test under non-regular conditions," Research Memorandum 025, Maastricht University, Graduate School of Business and Economics (GSBE).
    19. Haruhiko Ogasawara, 2009. "Asymptotic expansions in the singular value decomposition for cross covariance and correlation under nonnormality," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 995-1017, December.
    20. Joakim Westerlund & Milda Norkutė & Ovidijus Stauskas, 2022. "The factor analytical approach in trending near unit root panels," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 501-508, May.

    More about this item

    Keywords

    Rank Testing; Matrix Perturbation Theory; Rank Estimation; Subspace Methods; Singular Value Decomposition; Weighting Matrices; Sequential Testing Strategy; Information Theoretic Criterion.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0307007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.