IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v63y1997i2p259-276.html
   My bibliography  Save this article

Compact Matrix Expressions for Generalized Wald Tests of Equality of Moment Vectors,

Author

Listed:
  • Satorra, Albert
  • Neudecker, Heinz

Abstract

Asymptotic chi-squared test statistics for testing the equality of moment vectors are developed. The test statistics proposed are generalized Wald test statistics that specialize for different settings by inserting an appropriate asymptotic variance matrix of sample moments. Scaled test statistics are also considered for dealing with nonstandard conditions. The specialization will be carried out for testing the equality of multinomial populations, and the equality of variance and correlation matrices for both normal and nonnormal data. When testing the equality of correlation matrices, a scaled version of the normal theory chi-squared statistic is proven to be an asymptotically exact chi-squared statistic in the case of elliptical data.

Suggested Citation

  • Satorra, Albert & Neudecker, Heinz, 1997. "Compact Matrix Expressions for Generalized Wald Tests of Equality of Moment Vectors, ," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 259-276, November.
  • Handle: RePEc:eee:jmvana:v:63:y:1997:i:2:p:259-276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91696-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    2. Neudecker, Heinz & Satorra, Albert, 1996. "The algebraic equality of two asymptotic tests for the hypothesis that a normal distribution has a specified correlation matrix," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 99-103, October.
    3. Wilson, Jeffrey R & Koehler, Kenneth J, 1991. "Hierarchical Models for Cross-Classified Overdispersed Multinomial Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 103-110, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaka Ratsimalahelo, 2003. "Strongly Consistent Determination of the Rank of Matrix," Econometrics 0307007, University Library of Munich, Germany.
    2. Caner, Mehmet & Yıldız, Neşe, 2012. "CUE with many weak instruments and nearly singular design," Journal of Econometrics, Elsevier, vol. 170(2), pages 422-441.
    3. Smaga, Łukasz, 2015. "Wald-type statistics using {2}-inverses for hypothesis testing in general factorial designs," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 215-220.
    4. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    5. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.
    6. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    7. Peter C. B. Phillips, 2022. "Asymptotics of Polynomial Time Trend Estimation and Hypothesis Testing under Rank Deficiency," Cowles Foundation Discussion Papers 2332, Cowles Foundation for Research in Economics, Yale University.
    8. Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
    9. Albert Satorra & Heinz Neudecker, 2015. "A Theorem on the Rank of a Product of Matrices with Illustration of Its Use in Goodness of Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 938-948, December.
    10. Kim, Jinyong & Kim, Kun Ho & Lee, Jeong Hwan, 2021. "Cross-sectional tests of asset pricing models with full-rank mimicking portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    11. Christoph Breunig & Stefan Hoderlein, 2016. "Nonparametric Specification Testing in Random Parameter Models," Boston College Working Papers in Economics 897, Boston College Department of Economics.
    12. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    13. Christoph Breunig & Stefan Hoderlein, 2018. "Specification testing in random coefficient models," Quantitative Economics, Econometric Society, vol. 9(3), pages 1371-1417, November.
    14. Komunjer, Ivana & Zhu, Yinchu, 2020. "Likelihood ratio testing in linear state space models: An application to dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 218(2), pages 561-586.
    15. Duplinskiy, A., 2014. "Is regularization necessary? A Wald-type test under non-regular conditions," Research Memorandum 025, Maastricht University, Graduate School of Business and Economics (GSBE).
    16. Joakim Westerlund & Milda Norkutė & Ovidijus Stauskas, 2022. "The factor analytical approach in trending near unit root panels," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 501-508, May.
    17. Xu, Ke-Li, 2018. "A semi-nonparametric estimator of regression discontinuity design with discrete duration outcomes," Journal of Econometrics, Elsevier, vol. 206(1), pages 258-278.
    18. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    19. Geert Dhaene & Olivier Scaillet, 2000. "Reversed Score and Likelihood Ratio Tests," Econometric Society World Congress 2000 Contributed Papers 1746, Econometric Society.
    20. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:63:y:1997:i:2:p:259-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.