IDEAS home Printed from https://ideas.repec.org/p/unm/umagsb/2014025.html
   My bibliography  Save this paper

Is regularization necessary? A Wald-type test under non-regular conditions

Author

Listed:
  • Duplinskiy, A.

    (Quantitative Economics)

Abstract

We study hypotheses testing in the presence of a possibly singular covariance matrix. We propose an alternative way to handle possible non-regularity in a covariance matrix of a Wald test, using the identity matrix as the weighting matrix when calculating the quadratic form. The resulting test statistic is not pivotal, but its asymptotic distribution can be approximated using bootstrap methods. In order to prove the validity of the approximations, we show that the square root of a positive semi-definite matrix is a continuously differentiable transformation with respect to the elements of the matrix. This result is important for the continuous mapping theorem to be applicable. We use two types of approximations. The first uses the parametric bootstrap and draws from the asymptotic distribution of the restriction with an estimated covariance matrix. The second applies the residual bootstrap to obtain the distribution of the test and delivers critical values, which control size and show good empirical power even in small samples. In contrast to regularization approaches, the test statistic considered in this paper does not involve arbitrary truncation parameters for which no practical guidelines are available and does not modify the information in the data.

Suggested Citation

  • Duplinskiy, A., 2014. "Is regularization necessary? A Wald-type test under non-regular conditions," Research Memorandum 025, Maastricht University, Graduate School of Business and Economics (GSBE).
  • Handle: RePEc:unm:umagsb:2014025
    DOI: 10.26481/umagsb.2014025
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/762017/guid-3f1dbf0e-80f7-43d0-8340-819036acba1f-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umagsb.2014025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    4. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    5. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    6. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
    7. Leeb, Hannes & Pötscher, Benedikt M., 2003. "The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations," Econometric Theory, Cambridge University Press, vol. 19(1), pages 100-142, February.
    8. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    9. J.J. Heckman & E.E. Leamer (ed.), 2001. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 5, number 5.
    10. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    11. Newey, Whitney K., 1987. "Specification tests for distributional assumptions in the Tobit model," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 125-145.
    12. Andrews, Donald W. K., 1988. "Chi-square diagnostic tests for econometric models : Introduction and applications," Journal of Econometrics, Elsevier, vol. 37(1), pages 135-156, January.
    13. Andrews, Donald W K, 1988. "Chi-Square Diagnostic Tests for Econometric Models: Theory," Econometrica, Econometric Society, vol. 56(6), pages 1419-1453, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Ke-Li, 2018. "A semi-nonparametric estimator of regression discontinuity design with discrete duration outcomes," Journal of Econometrics, Elsevier, vol. 206(1), pages 258-278.
    2. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    3. Al-Sadoon, Majid M., 2017. "A unifying theory of tests of rank," Journal of Econometrics, Elsevier, vol. 199(1), pages 49-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    2. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    3. Jonathan B. Hill, 2007. "Efficient tests of long-run causation in trivariate VAR processes with a rolling window study of the money-income relationship," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 747-765.
    4. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    5. Jonathan B. Hill, 2005. "Causation Delays and Causal Neutralization up to Three Steps Ahead: The Money-Output Relationship Revisited," Econometrics 0503016, University Library of Munich, Germany, revised 23 Mar 2005.
    6. Jean-Marie Dufour & David Tessier, 2006. "Short-Run and Long-Run Causality between Monetary Policy Variables and Stock Prices," Staff Working Papers 06-39, Bank of Canada.
    7. Xu, Ke-Li, 2018. "A semi-nonparametric estimator of regression discontinuity design with discrete duration outcomes," Journal of Econometrics, Elsevier, vol. 206(1), pages 258-278.
    8. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    9. DUFOUR, Jean-Marie & JOUINI, Tarek, 2005. "Finite-Sample Simulation-Based Inference in VAR Models with Applications to Order Selection and Causality Testing," Cahiers de recherche 2005-12, Universite de Montreal, Departement de sciences economiques.
    10. Zaka Ratsimalahelo, 2003. "Strongly Consistent Determination of the Rank of Matrix," EERI Research Paper Series EERI_RP_2003_04, Economics and Econometrics Research Institute (EERI), Brussels.
    11. Lütkepohl, Helmut, 1999. "Vector autoregressive analysis," SFB 373 Discussion Papers 1999,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    13. Yener Coskun & Christos Bouras & Rangan Gupta & Mark E. Wohar, 2021. "Multi-Horizon Financial and Housing Wealth Effects across the U.S. States," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    14. Apergis, Nicholas & Bouras, Christos & Christou, Christina & Hassapis, Christis, 2018. "Multi-horizon wealth effects across the G7 economies," Economic Modelling, Elsevier, vol. 72(C), pages 165-176.
    15. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
    16. Lütkepohl, Helmut, 1999. "Vector autoregressions," SFB 373 Discussion Papers 1999,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    17. Breitung, Jörg & Swanson, Norman Rasmus, 1998. "Temporal aggregation and causality in multiple time series models," SFB 373 Discussion Papers 1998,27, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    18. François-Éric Racicota & David Tessierc, 2023. "On the relationship between Jorda?s IRF local projection and Dufour et al.?s robust (p,h)-autoregression multihorizon causality: a note," Working Papers 2023-001, Department of Research, Ipag Business School.
    19. Dufour, Jean-Marie & Valéry, Pascale, 2009. "Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 193-206, June.
    20. Ying-Chao Hung & Neng-Fang Tseng, 2013. "Extracting informative variables in the validation of two-group causal relationship," Computational Statistics, Springer, vol. 28(3), pages 1151-1167, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umagsb:2014025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.