IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/01-09-051.html
   My bibliography  Save this paper

Estimating Coarse Gene Network Structure from Large-Scale Gene Perturbation Data

Author

Listed:
  • Andreas Wagner

Abstract

Large scale gene perturbation experiments generate information about the number of genes whose activity is directly or indirectly affected by a gene perturbation. From this information, one can numerically estimate coarse structural network features such as the total number of direct regulatory interactions and the number of isolated subnetworks in a transcriptional regulation network. Applied to the results of a large-scale gene knockout experiment in the yeast Saccharomyces cerevisiae, the results suggests that the yeast transcriptional regulatory network is very sparse, containing no more direct regulatory interactions than genes. The network comprises more than one hundred independent sub-networks.

Suggested Citation

  • Andreas Wagner, 2001. "Estimating Coarse Gene Network Structure from Large-Scale Gene Perturbation Data," Working Papers 01-09-051, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:01-09-051
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. David J. Lockhart & Elizabeth A. Winzeler, 2000. "Genomics, gene expression and DNA arrays," Nature, Nature, vol. 405(6788), pages 827-836, June.
    2. Gernot Grabher & Walter W. Powell (ed.), 2004. "Networks," Books, Edward Elgar Publishing, volume 0, number 2771.
    3. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    4. Santiago F. Elena & Richard E. Lenski, 1997. "Test of synergistic interactions among deleterious mutations in bacteria," Nature, Nature, vol. 390(6658), pages 395-398, November.
    5. Andreas Wagner & David Fell, 2000. "The Small World Inside Large Metabolic Networks," Working Papers 00-07-041, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romualdo Pastor-Satorras & Eric Smith & Ricard V. Solé, 2002. "Evolving Protein Interaction Networks through Gene Duplication," Working Papers 02-02-008, Santa Fe Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Wagner, 2001. "The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes," Working Papers 01-04-022, Santa Fe Institute.
    2. Petra M. Gleiss & Peter F. Stadler & Andreas Wagner & David A. Fell, 2000. "Small Cycles in Small Worlds," Working Papers 00-10-058, Santa Fe Institute.
    3. Marr, Carsten & Hütt, Marc-Thorsten, 2005. "Topology regulates pattern formation capacity of binary cellular automata on graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 641-662.
    4. Serra, Roberto & Villani, Marco & Agostini, Luca, 2004. "On the dynamics of random Boolean networks with scale-free outgoing connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 665-673.
    5. Andrea De Martino & Daniele De Martino & Roberto Mulet & Andrea Pagnani, 2014. "Identifying All Moiety Conservation Laws in Genome-Scale Metabolic Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-11, July.
    6. How to Reconstruct a Large Genetic Network from n Gene Perturbations in Fewer than n2 Easy Steps, 2001. "How to Reconstruct a Large Genetic Network from," Working Papers 01-09-047, Santa Fe Institute.
    7. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    8. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    9. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    10. Sgrignoli, P. & Agliari, E. & Burioni, R. & Schianchi, A., 2015. "Instability and network effects in innovative markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 260-271.
    11. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    12. Christian F A Negre & Hayato Ushijima-Mwesigwa & Susan M Mniszewski, 2020. "Detecting multiple communities using quantum annealing on the D-Wave system," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-14, February.
    13. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    14. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    15. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    16. Semi Min & Juyong Park, 2019. "Modeling narrative structure and dynamics with networks, sentiment analysis, and topic modeling," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
    17. Brueckner, Jan K. & Pels, Eric, 2005. "European airline mergers, alliance consolidation, and consumer welfare," Journal of Air Transport Management, Elsevier, vol. 11(1), pages 27-41.
    18. Jiang, Jingchi & Zheng, Jichuan & Zhao, Chao & Su, Jia & Guan, Yi & Yu, Qiubin, 2016. "Clinical-decision support based on medical literature: A complex network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 42-54.
    19. Borm, Peter & van den Brink, Rene & Levinsky, Rene & Slikker, Marco, 2004. "On two new social choice correspondences," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 51-68, January.
    20. Moukarzel, Cristian F., 2005. "Effective dimensions in networks with long-range connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(1), pages 157-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:01-09-051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.