IDEAS home Printed from https://ideas.repec.org/p/wop/iasawp/wp94015.html
   My bibliography  Save this paper

Parallel Solution of Linear Programs Via Nash Equilibria

Author

Listed:
  • M.J. Kallio
  • A. Ruszczynski

Abstract

The linear programming problem is shown to be equivalent to a game in which primal players minimize the augmented Lagrangian function for the primal problem and dual players maximize the augmented Lagrangian function for the dual problem. Based on that, a parallel solution method is developed in which processors carry out under-relaxed Jacobi steps for the players. Strong convergence of the method is proved and the ratio of linear convergence estimated. Computational results are highly encouraging.

Suggested Citation

  • M.J. Kallio & A. Ruszczynski, 1994. "Parallel Solution of Linear Programs Via Nash Equilibria," Working Papers wp94015, International Institute for Applied Systems Analysis.
  • Handle: RePEc:wop:iasawp:wp94015
    as

    Download full text from publisher

    File URL: http://www.iiasa.ac.at/Publications/Documents/WP-94-015.ps
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Ruszczynski, 1992. "Augmented Lagrangian Decomposition for Sparse Convex Optimization," Working Papers wp92075, International Institute for Applied Systems Analysis.
    2. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    3. Robert E. Bixby, 1992. "Implementing the Simplex Method: The Initial Basis," INFORMS Journal on Computing, INFORMS, vol. 4(3), pages 267-284, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M.J. Kallio & A. Ruszczynski, 1994. "Perturbation Methods for Saddle Point Computation," Working Papers wp94038, International Institute for Applied Systems Analysis.
    2. A. Ruszczynski, 1994. "A Partial Regularization Method for Saddle Point Seeking," Working Papers wp94020, International Institute for Applied Systems Analysis.
    3. M.J. Kallio & C.H. Rosa, 1994. "Large-Scale Convex Optimization via Saddle Point Computation," Working Papers wp94107, International Institute for Applied Systems Analysis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    2. A. Ruszczynski, 1994. "A Partial Regularization Method for Saddle Point Seeking," Working Papers wp94020, International Institute for Applied Systems Analysis.
    3. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    4. A. Ruszczynski, 1993. "Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results," Working Papers wp93021, International Institute for Applied Systems Analysis.
    5. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    6. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    7. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    8. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    9. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    10. Marwan A. Kutbi & Abdul Latif & Xiaolong Qin, 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
    11. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    12. Gui-Hua Lin & Zhen-Ping Yang & Hai-An Yin & Jin Zhang, 2023. "A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 669-710, November.
    13. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    14. Zhu, Daoli & Marcotte, Patrice, 1995. "Coupling the auxiliary problem principle with descent methods of pseudoconvex programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 670-685, June.
    15. Guo, Zhaomiao & Fan, Yueyue, 2017. "A Stochastic Multi-Agent Optimization Model for Energy Infrastructure Planning Under Uncertainty and Competition," Institute of Transportation Studies, Working Paper Series qt89s5s8hn, Institute of Transportation Studies, UC Davis.
    16. Yong-Jin Liu & Jing Yu, 2023. "A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem," Computational Optimization and Applications, Springer, vol. 85(2), pages 547-582, June.
    17. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    18. María Gonzalez-Lima & Aurelio Oliveira & Danilo Oliveira, 2013. "A robust and efficient proposal for solving linear systems arising in interior-point methods for linear programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 573-597, December.
    19. Liwei Zhang & Yule Zhang & Jia Wu & Xiantao Xiao, 2022. "Solving Stochastic Optimization with Expectation Constraints Efficiently by a Stochastic Augmented Lagrangian-Type Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2989-3006, November.
    20. A. Swietanowski, 1995. "A Modular Presolve Procedure for Large Scale Linear Programming," Working Papers wp95113, International Institute for Applied Systems Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:wp94015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/iiasaat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.