Big Data and Regional Science: Opportunities, Challenges, and Directions for Future Research
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Neil Reid & Ralph McLaughlin & Michael Moore, 2013. "The Ubiquity of Good Taste: A Spatial Analysis of the Craft Brewing Industry in the United States," ERSA conference papers ersa13p1026, European Regional Science Association.
- James Lesage & Manfred Fischer, 2008. "Spatial Growth Regressions: Model Specification, Estimation and Interpretation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(3), pages 275-304.
- Manfred M. Fischer & Jinfeng Wang, 2011. "Spatial Data Analysis," SpringerBriefs in Regional Science, Springer, number 978-3-642-21720-3, July.
- Arthur Getis, 1999. "Some thoughts on the impact of large data sets on regional science," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 33(2), pages 145-150.
- Edward L. Glaeser & Hyunjin Kim & Michael Luca, 2019.
"Nowcasting the Local Economy: Using Yelp Data to Measure Economic Activity,"
NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 249-273,
National Bureau of Economic Research, Inc.
- Edward L. Glaeser & Hyunjin Kim & Michael Luca, 2017. "Nowcasting the Local Economy: Using Yelp Data to Measure Economic Activity," NBER Working Papers 24010, National Bureau of Economic Research, Inc.
- Edward L. Glaeser & Hyunjin Kim & Michael Luca, 2017. "Nowcasting the Local Economy: Using Yelp Data to Measure Economic Activity," Harvard Business School Working Papers 18-022, Harvard Business School, revised Oct 2017.
- Jing Zhou & Yundong Tu & Yuxin Chen & Hansheng Wang, 2017. "Estimating Spatial Autocorrelation With Sampled Network Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 130-138, January.
- Charlie Karlsson & Martin Andersson & Therese Norman (ed.), 2015. "Handbook of Research Methods and Applications in Economic Geography," Books, Edward Elgar Publishing, number 14395.
- Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
- Zhenhua Chen & Laurie Schintler, 2015. "Sensitivity of location-sharing services data: evidence from American travel pattern," Transportation, Springer, vol. 42(4), pages 669-682, July.
- Smirnov, Oleg & Anselin, Luc, 2001. "Fast maximum likelihood estimation of very large spatial autoregressive models: a characteristic polynomial approach," Computational Statistics & Data Analysis, Elsevier, vol. 35(3), pages 301-319, January.
- Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015.
"Statistical model selection with “Big Data”,"
Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.
- David Hendry & Jurgen A. Doornik, 2014. "Statistical Model Selection with 'Big Data'," Economics Series Working Papers 735, University of Oxford, Department of Economics.
- Mei-Po Kwan, 2016. "Algorithmic Geographies: Big Data, Algorithmic Uncertainty, and the Production of Geographic Knowledge," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(2), pages 274-282, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Schintler, Laurie A. & Fischer, Manfred M., 2018. "The Analysis of Big Data on Cites and Regions - Some Computational and Statistical Challenges," Working Papers in Regional Science 2018/08, WU Vienna University of Economics and Business.
- Vecci, Joseph & Zelinsky, Tomas, 2017. "A Spatial Analysis of Foreign Aid and Civil Society," Working Papers in Economics 688, University of Gothenburg, Department of Economics.
- Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021.
"Modelling non-stationary ‘Big Data’,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1556-1575.
- Jennifer Castle & Jurgen Doornik & David Hendry, 2020. "Modelling Non-stationary 'Big Data'," Economics Series Working Papers 905, University of Oxford, Department of Economics.
- Zelinsky Tomas, 2014.
"Regional poverty levels in the European Union: a spatial econometric approach,"
Экономика региона, CyberLeninka;Федеральное государственное бюджетное учреждение науки «Институт экономики Уральского отделения Российской академии наук», issue 2, pages 62-69.
- Tomas Zelinsky, 2014. "Regional Poverty Levels in the European Union: A Spatial Econometric Approach," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(2), pages 62-69.
- Tomas Zelinsky, 2012. "Determinants of Monetary Poverty in the European Union," ERSA conference papers ersa12p435, European Regional Science Association.
- Sucharita Gopal & Manfred M. Fischer, 2023.
"Opioid mortality in the US: quantifying the direct and indirect impact of sociodemographic and socioeconomic factors,"
Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-17, December.
- Fischer, Manfred M. & Gopal, Sucharita, 2023. "Opioid Mortality in the US: Quantifying the Direct and Indirect Impact of Sociodemographic and Socioeconomic Factors," Working Papers in Regional Science 2023/01, WU Vienna University of Economics and Business.
- Zhu, Xuening & Huang, Danyang & Pan, Rui & Wang, Hansheng, 2020. "Multivariate spatial autoregressive model for large scale social networks," Journal of Econometrics, Elsevier, vol. 215(2), pages 591-606.
- Sascha SARDADVAR, 2016. "Regional Economic Growth And Steady States With Free Factor Movement: A Theoretical Model With Evidence From Europe," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 43, pages 21-57.
- Демидова Ольга Анатольевна & Иванов Денис Сергеевич, 2016. "Модели Экономического Роста С Неоднородными Пространственными Эффектами (На Примере Российских Регионов)," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(1), pages 52-75.
- Ron Tidhar & Kathleen M. Eisenhardt, 2020. "Get rich or die trying… finding revenue model fit using machine learning and multiple cases," Strategic Management Journal, Wiley Blackwell, vol. 41(7), pages 1245-1273, July.
- Ma, Yingying & Lan, Wei & Zhou, Fanying & Wang, Hansheng, 2020. "Approximate least squares estimation for spatial autoregressive models with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Yan Chen & Youran Qi & Qing Liu & Peter Chien, 2018. "Sequential sampling enhanced composite likelihood approach to estimation of social intercorrelations in large-scale networks," Quantitative Marketing and Economics (QME), Springer, vol. 16(4), pages 409-440, December.
- Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022.
"Machine learning in the service of policy targeting: The case of public credit guarantees,"
Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
- Monica Andini & Michela Boldrini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Andrea Paladini, 2019. "Machine learning in the service of policy targeting: the case of public credit guarantees," Temi di discussione (Economic working papers) 1206, Bank of Italy, Economic Research and International Relations Area.
- Huang, Danyang & Hu, Wei & Jing, Bingyi & Zhang, Bo, 2023. "Grouped spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Túlio Cravo, 2011. "Regional Economic Growth and SMEs in Brazil: a Spatial Analysis (Submission for the Refereed Y-session Papers)," ERSA conference papers ersa10p508, European Regional Science Association.
- Robert Kudłak & Wojciech Kisiała & Bartłomiej Kołsut, 2023. "Determinanty posiadania samochodu w Polsce: wyniki modelowania w ujęciu przestrzennym w latach 2005 i 2019," Ekonomista, Polskie Towarzystwo Ekonomiczne, issue 2, pages 152-173.
- Chocholatá Michaela & Furková Andrea, 2017. "Regional Disparities in Education Attainment Level in the European Union: A Spatial Approach," TalTech Journal of European Studies, Sciendo, vol. 7(2), pages 107-131, October.
- Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019.
"The Impact of Big Data on Firm Performance: An Empirical Investigation,"
AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
- Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2018. "The Impact of Big Data on Firm Performance: An Empirical Investigation," NBER Working Papers 24334, National Bureau of Economic Research, Inc.
- Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
- Uwaoma G. Nwaogu & Michael J. Ryan, 2015. "FDI, Foreign Aid, Remittance and Economic Growth in Developing Countries," Review of Development Economics, Wiley Blackwell, vol. 19(1), pages 100-115, February.
More about this item
Keywords
Spatial Big Data; data analysis pipeline; methodological and technical challenges; cross-cutting challenges; regional science;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-04-09 (Big Data)
- NEP-GEO-2018-04-09 (Economic Geography)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wus046:6122. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WU Library (email available below). General contact details of provider: https://research.wu.ac.at/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.