IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/24010.html
   My bibliography  Save this paper

Nowcasting the Local Economy: Using Yelp Data to Measure Economic Activity

Author

Listed:
  • Edward L. Glaeser
  • Hyunjin Kim
  • Michael Luca

Abstract

Can new data sources from online platforms help to measure local economic activity? Government datasets from agencies such as the U.S. Census Bureau provide the standard measures of local economic activity at the local level. However, these statistics typically appear only after multi-year lags, and the public-facing versions are aggregated to the county or ZIP code level. In contrast, crowdsourced data from online platforms such as Yelp are often contemporaneous and geographically finer than official government statistics. In this paper, we present evidence that Yelp data can complement government surveys by measuring economic activity in close to real time, at a granular level, and at almost any geographic scale. Changes in the number of businesses and restaurants reviewed on Yelp can predict changes in the number of overall establishments and restaurants in County Business Patterns. An algorithm using contemporaneous and lagged Yelp data can explain 29.2 percent of the residual variance after accounting for lagged CBP data, in a testing sample not used to generate the algorithm. The algorithm is more accurate for denser, wealthier, and more educated ZIP codes.

Suggested Citation

  • Edward L. Glaeser & Hyunjin Kim & Michael Luca, 2017. "Nowcasting the Local Economy: Using Yelp Data to Measure Economic Activity," NBER Working Papers 24010, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:24010
    Note: EFG PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w24010.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Goldfarb, Avi & Greenstein, Shane M. & Tucker, Catherine E. (ed.), 2015. "Economic Analysis of the Digital Economy," National Bureau of Economic Research Books, University of Chicago Press, number 9780226206981, July.
    2. Allen J. Scott, 2012. ". By Edward Glaeser," Economic Geography, Taylor & Francis Journals, vol. 88(1), pages 97-100, January.
    3. Jorge Guzman & Scott Stern, 2016. "Nowcasting and Placecasting Entrepreneurial Quality and Performance," NBER Chapters, in: Measuring Entrepreneurial Businesses: Current Knowledge and Challenges, pages 63-109, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnese Carella & Federica Ciocchetta & Valentina Michelangeli & Federico Maria Signoretti, 2020. "What can we learn about mortgage supply from online data?," Questioni di Economia e Finanza (Occasional Papers) 583, Bank of Italy, Economic Research and International Relations Area.
    2. Antonelli, Cristiano, 2017. "Digital knowledge generation and the appropriability trade-off," Telecommunications Policy, Elsevier, vol. 41(10), pages 991-1002.
    3. John M. Abowd & Ian M. Schmutte & William Sexton & Lars Vilhuber, 2019. "Suboptimal Provision of Privacy and Statistical Accuracy When They are Public Goods," Papers 1906.09353, arXiv.org.
    4. Kekezi, Orsa & Mellander, Charlotta, 2017. "Geography and Media – Does a Local Editorial Office Increase the Consumption of Local News?," Working Paper Series in Economics and Institutions of Innovation 447, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    5. Ferretti, Marco & Guerini, Massimiliano & Panetti, Eva & Parmentola, Adele, 2022. "The partner next door? The effect of micro-geographical proximity on intra-cluster inter-organizational relationships," Technovation, Elsevier, vol. 111(C).
    6. Babur De los Santos & Matthijs R. Wildenbeest, 2017. "E-book pricing and vertical restraints," Quantitative Marketing and Economics (QME), Springer, vol. 15(2), pages 85-122, June.
    7. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    8. Sutirtha Bagchi, 2018. "A Tale of Two Cities: An Examination of Medallion Prices in New York and Chicago," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 53(2), pages 295-319, September.
    9. Rongrong Zhou & Decai Tang & Dan Da & Wenya Chen & Lin Kong & Valentina Boamah, 2022. "Research on China’s Manufacturing Industry Moving towards the Middle and High-End of the GVC Driven by Digital Economy," Sustainability, MDPI, vol. 14(13), pages 1-30, June.
    10. Steven Berry & Martin Gaynor & Fiona Scott Morton, 2019. "Do Increasing Markups Matter? Lessons from Empirical Industrial Organization," Journal of Economic Perspectives, American Economic Association, vol. 33(3), pages 44-68, Summer.
    11. Masha Krupenkin & David Rothschild & Shawndra Hill & Elad Yom-Tov, 2019. "President Trump Stress Disorder: Partisanship, Ethnicity, and Expressive Reporting of Mental Distress After the 2016 Election," SAGE Open, , vol. 9(1), pages 21582440198, March.
    12. Antonelli, Cristiano & Tubiana, Matteo, 2020. "Income inequality in the knowledge economy," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 153-164.
    13. Nivín, Rafael & Pérez, Fernando, 2019. "Estimación de un Índice de Condiciones Financieras para el Perú," Revista Estudios Económicos, Banco Central de Reserva del Perú, issue 37, pages 49-64.
    14. Boğa Semra & Topcu Murat, 2020. "Creative Economy: A Literature Review on Relational Dimensions, Challanges, and Policy Implications," Economics, Sciendo, vol. 8(2), pages 149-169, December.
    15. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    16. Fiammetta Rossetti & Daniel Nepelski & Melisande Cardona, 2018. "The Startup Europe Ecosystem. Analysis of the Startup Europe projects and of their beneficiaries," JRC Research Reports JRC110945, Joint Research Centre.
    17. Giovanni Dosi & Emanuele Pugliese & Pietro Santoleri, 2017. "Growth and survival of the `fitter'? Evidence from US new-born firms," LEM Papers Series 2017/06, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Easley, David & O'Hara, Maureen & Basu, Soumya, 2019. "From mining to markets: The evolution of bitcoin transaction fees," Journal of Financial Economics, Elsevier, vol. 134(1), pages 91-109.
    19. Alan Benson & Aaron Sojourner & Akhmed Umyarov, 2020. "Can Reputation Discipline the Gig Economy? Experimental Evidence from an Online Labor Market," Management Science, INFORMS, vol. 66(5), pages 1802-1825, May.
    20. Tuhkuri, Joonas, 2016. "Forecasting Unemployment with Google Searches," ETLA Working Papers 35, The Research Institute of the Finnish Economy.

    More about this item

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:24010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.