IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa10p752.html
   My bibliography  Save this paper

Testing Tobler's law in spatial panels: a test for spatial dependence robust against common factors

Author

Listed:
  • Giovanni Millo

Abstract

In the spatial econometrics literature, spatial error dependence is characterized by spatial autoregressive processes, which relate every observation in the cross-section to any other with distance-decaying intensity: i.e., dependence obeys Tobler's First Law of Geography ('everything is related to everything else, but near things are more related than distant things'). In the literature on factor models, on the converse, the degree of correlation between cross-sectional units depends only on factor loadings. Standard spatial correlation tests have power against both types of dependence, while the economic meaning of the two can be much different; so it may be useful to devise a test for detecting 'distance-related' dependence in the presence of a 'factor-type' one. Pesaran's CD is a test for global cross-sectional dependence with good properties. The CD(p) variant only takes into account p-th order neighbouring units to test for local cross-sectional dependence. The pattern of CD(p) as p increases can be informative about the type of dependence in the errors, but the test power changes as new pairs of observations are taken into account. I propose a bootstrap test based on the values taken by the CD(p) test under permutations of the neighbourhood matrix, i.e. when 'resampling the neighbours'. I provide Monte Carlo evidence of it being able to tell the presence of spatial-type dependence in the errors of a typical spatial panel irrespective of the presence of an unobserved factor structure.

Suggested Citation

  • Giovanni Millo, 2011. "Testing Tobler's law in spatial panels: a test for spatial dependence robust against common factors," ERSA conference papers ersa10p752, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa10p752
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa10/ERSA2010finalpaper752.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alicia H. Munnell, 1990. "Why has productivity growth declined? Productivity and public investment," New England Economic Review, Federal Reserve Bank of Boston, issue Jan, pages 3-22.
    2. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    3. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    4. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    2. Naima Chrid & Sami Saafi & Mohamed Chakroun, 2021. "Export Upgrading and Economic Growth: a Panel Cointegration and Causality Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(2), pages 811-841, June.
    3. Bertoli, Simone & Fernández-Huertas Moraga, Jesús, 2013. "Multilateral resistance to migration," Journal of Development Economics, Elsevier, vol. 102(C), pages 79-100.
    4. Alexander Chudik & Roland Straub, 2017. "Size, Openness, And Macroeconomic Interdependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(1), pages 33-55, February.
    5. Elisa Cavatorta & Ron P. Smith, 2017. "Factor Models in Panels with Cross-sectional Dependence: An Application to the Extended SIPRI Military Expenditure Data," Defence and Peace Economics, Taylor & Francis Journals, vol. 28(4), pages 437-456, July.
    6. Felipa de Mello-Sampayo & Sofia de Sousa-Vale, 2014. "Financing Health Care Expenditure in the OECD Countries: Evidence from a Heterogeneous, Cross-Sectional Dependent Panel," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 61(2), pages 207-225, March.
    7. Lanzafame, Matteo & Nogueira, Reginaldo, 2013. "Inflation targeting and interest rates," MPRA Paper 46153, University Library of Munich, Germany.
    8. Nikos Benos & Nikolaos Mylonidis & Stefania Zotou, 2017. "Estimating production functions for the US states: the role of public and human capital," Empirical Economics, Springer, vol. 52(2), pages 691-721, March.
    9. Perry Singleton, 2015. "Health, Medical Innovation, and Disability Insurance: A Care Study of HIV Antiretroviral Therapy," Center for Policy Research Working Papers 182, Center for Policy Research, Maxwell School, Syracuse University.
    10. Bonizzi, Bruno, 2017. "Institutional investors’ allocation to emerging markets: A panel approach to asset demand," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 47(C), pages 47-64.
    11. Markus Eberhardt & Francis Teal, 2013. "No Mangoes in the Tundra: Spatial Heterogeneity in Agricultural Productivity Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(6), pages 914-939, December.
    12. Su, Liangjun & Jin, Sainan, 2012. "Sieve estimation of panel data models with cross section dependence," Journal of Econometrics, Elsevier, vol. 169(1), pages 34-47.
    13. Sean Holly & Ivan Petrella, 2012. "Factor Demand Linkages, Technology Shocks, and the Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 948-963, November.
    14. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    15. Baltagi, Badi H. & Li, Jing, 2015. "Cointegration of matched home purchases and rental price indexes — Evidence from Singapore," Regional Science and Urban Economics, Elsevier, vol. 55(C), pages 80-88.
    16. Cem Ertur & Antonio Musolesi, 2014. "Dépendance individuelle forte et faible : une analyse en données de panel de la diffusion internationale de la technologie," Working Papers halshs-01015208, HAL.
    17. Giampaolo Arachi & Valeria Bucci & Alessandra Casarico, 2015. "Tax structure and macroeconomic performance," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 22(4), pages 635-662, August.
    18. Badi H. Baltagi & Raffaele Lagravinese & Francesco Moscone & Elisa Tosetti, 2017. "Health Care Expenditure and Income: A Global Perspective," Health Economics, John Wiley & Sons, Ltd., vol. 26(7), pages 863-874, July.
    19. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    20. Teemu Makkonen & Timo Mitze, 2019. "Deconstructing the Education-Innovation-Development Nexus in the EU-28 Using Panel Causality and Poolability Tests," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(2), pages 516-549, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa10p752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.