IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/6230.html
   My bibliography  Save this paper

Green growth -- lessons from growth theory

Author

Listed:
  • Smulders, Sjak
  • Withagen, Cees

Abstract

This paper reviews dynamic general equilibrium models in order to collect insights on the interaction between economic growth and environmental issues. The authors discuss the Ramsey model and extend it for natural resource inputs and pollution, as well as for endogenous technical change. Green growth becomes within reach if there is good substitution, a clean backstop technology, a small share of natural resources in gross domestic product, and/or green directed technical change.

Suggested Citation

  • Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.
  • Handle: RePEc:wbk:wbrwps:6230
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2012/10/16/000158349_20121016140010/Rendered/PDF/wps6230.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    2. Partha Dasgupta, 2010. "20th Anniversary of EAERE: The European Association of Environmental and Resource Economists," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(2), pages 135-137, June.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    5. Benchekroun, Hassan & Withagen, Cees, 2011. "The optimal depletion of exhaustible resources: A complete characterization," Resource and Energy Economics, Elsevier, vol. 33(3), pages 612-636, September.
    6. Benchekroun, Hassan & Halsema, Alex & Withagen, Cees, 2009. "On nonrenewable resource oligopolies: The asymmetric case," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1867-1879, November.
    7. Di Maria, C. & van der Werf, E.H., 2005. "Carbon Leakage Revisited : Unilateral Climate Policy with Directed Technical Change," Discussion Paper 2005-68, Tilburg University, Center for Economic Research.
    8. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    9. Graciela Chichilnisky, 1997. "What Is Sustainable Development?," Land Economics, University of Wisconsin Press, vol. 73(4), pages 467-491.
    10. Mohtadi, Hamid, 1996. "Environment, growth, and optimal policy design," Journal of Public Economics, Elsevier, vol. 63(1), pages 119-140, December.
    11. Jeffrey A. Krautkraemer, 1985. "Optimal Growth, Resource Amenities and the Preservation of Natural Environments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(1), pages 153-169.
    12. Wolfgang Buchholz & Swapan Dasgupta & Tapan Mitra, 2005. "Intertemporal Equity and Hartwick's Rule in an Exhaustible Resource Model," Scandinavian Journal of Economics, Wiley Blackwell, vol. 107(3), pages 547-561, September.
    13. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    14. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    15. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    16. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    17. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    18. André Grimaud & Luc Rouge, 2008. "Environment, Directed Technical Change and Economic Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(4), pages 439-463, December.
    19. Hart, Rob, 2004. "Growth, environment and innovation--a model with production vintages and environmentally oriented research," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1078-1098, November.
    20. Christian Groth & Poul Schou, 2002. "Can non-renewable resources alleviate the knife-edge character of endogenous growth?," Oxford Economic Papers, Oxford University Press, vol. 54(3), pages 386-411, July.
    21. Frederick van der Ploeg, 2011. "Natural Resources: Curse or Blessing?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 366-420, June.
    22. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 29-45.
    23. Francesco Ricci, 2007. "Environmental policy and growth when inputs are differentiated in pollution intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(3), pages 285-310, November.
    24. Di Maria, Corrado & Valente, Simone, 2008. "Hicks meets Hotelling: the direction of technical change in capital–resource economies," Environment and Development Economics, Cambridge University Press, vol. 13(6), pages 691-717, December.
    25. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    26. Tom-Reiel Heggedal, 2008. "On R&D and the undersupply of emerging versus mature technologies," Discussion Papers 571, Statistics Norway, Research Department.
    27. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.
    28. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    29. Sinn, Hans-Werner, . "Das grüne Paradoxon ; Plädoyer für eine illusionsfreie Klimapolitik," Monographs in Economics, University of Munich, Department of Economics, number 19627, November.
    30. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
    31. Di Maria Corrado & Smulders Sjak A., 2005. "Trade Pessimists vs Technology Optimists: Induced Technical Change and Pollution Havens," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(2), pages 1-27, January.
    32. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    33. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    34. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    35. Benchekroun, Hassan & Withagen, Cees, 2011. "The optimal depletion of exhaustible resources: A complete characterization," Resource and Energy Economics, Elsevier, vol. 33(3), pages 612-636, September.
    36. Asheim, Geir B. & Buchholz, Wolfgang & Hartwick, John M. & Mitra, Tapan & Withagen, Cees, 2007. "Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints," Journal of Environmental Economics and Management, Elsevier, vol. 53(2), pages 213-229, March.
    37. Tsur, Yacov & Zemel, Amos, 2003. "Optimal transition to backstop substitutes for nonrenewable resources," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 551-572, February.
    38. Michael Hoel, 2008. "Bush Meets Hotelling: Effects of Improved Renewable Energy Technology on Greenhouse Gas Emissions," CESifo Working Paper Series 2492, CESifo.
    39. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    40. Schelling, Thomas C, 1995. "Intergenerational discounting," Energy Policy, Elsevier, vol. 23(4-5), pages 395-401.
    41. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    42. Sjak Smulders & Corrado Di Maria, 2012. "The Cost of Environmental Policy under Induced Technical Change," CESifo Working Paper Series 3886, CESifo.
    43. Geir B. Asheim, 1986. "Hartwick's Rule in Open Economies," Canadian Journal of Economics, Canadian Economics Association, vol. 19(3), pages 395-402, August.
    44. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    45. Stokey, Nancy L, 1998. "Are There Limits to Growth?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(1), pages 1-31, February.
    46. Withagen, Cees, 1994. "Pollution and exhaustibility of fossil fuels," Resource and Energy Economics, Elsevier, vol. 16(3), pages 235-242, August.
    47. Frederick Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 283-311, February.
    48. Philippe Michel & Gilles Rotillon, 1995. "Disutility of pollution and endogenous growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(3), pages 279-300, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Han & Xi Chen & Yawen Sun, 2021. "Technology or Institutions: Which Is the Source of Green Economic Growth in Chinese Cities?," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    2. VARDAR, N. Baris, 2013. "Imperfect resource substitution and optimal transition to clean technologies," LIDAM Discussion Papers CORE 2013072, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Wang,Dieter, 2021. "Natural Capital and Sovereign Bonds," Policy Research Working Paper Series 9606, The World Bank.
    4. Elliott, Robert J.R. & Lindley, Joanne K., 2017. "Environmental Jobs and Growth in the United States," Ecological Economics, Elsevier, vol. 132(C), pages 232-244.
    5. Antoine Dechezleprêtre & Ralf Martin & Myra Mohnen, 2014. "Knowledge Spillovers from Clean and Dirty Technologies," CEP Discussion Papers dp1300, Centre for Economic Performance, LSE.
    6. Toman,Michael A., 2012. "Green Growth : an exploratory review," Policy Research Working Paper Series 6067, The World Bank.
    7. Janser, Markus, 2018. "The greening of jobs in Germany : First evidence from a text mining based index and employment register data," IAB-Discussion Paper 201814, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    2. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    3. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    4. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    5. Christian Beermann, 2015. "Climate Policy and the Intertemporal Supply of Fossil Resources," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 62.
    6. Jin, Wei, 2021. "Path dependence, self-fulfilling expectations, and carbon lock-in," Resource and Energy Economics, Elsevier, vol. 66(C).
    7. Lucas Bretschger, 2016. "Is the Environment Compatible with Growth? Adopting an Integrated Framework," CER-ETH Economics working paper series 16/260, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    8. van der Ploeg, Frederick & Withagen, Cees, 2011. "Growth and the Optimal Carbon Tax: When to Switch from Exhaustible Resources to Renewables?," CEPR Discussion Papers 8215, C.E.P.R. Discussion Papers.
    9. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    10. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    11. Wei Jin & ZhongXiang Zhang, 2018. "Capital Accumulation, Green Paradox, and Stranded Assets: An Endogenous Growth Perspective," Working Papers 2018.33, Fondazione Eni Enrico Mattei.
    12. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    13. Vardar, N. Baris, 2024. "Optimal taxation of nonrenewable resources during clean energy transition: A general equilibrium approach," Mathematical Social Sciences, Elsevier, vol. 130(C), pages 10-23.
    14. Burghaus, Kerstin & Funk, Peter, 2013. "Endogenous Growth, Green Innovation and GDP Deceleration in a World with Polluting Production Inputs," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80022, Verein für Socialpolitik / German Economic Association.
    15. Bretschger, Lucas, 2020. "Malthus in the light of climate change," European Economic Review, Elsevier, vol. 127(C).
    16. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    17. Nick Hanley & Louis Dupuy & Eoin McLaughlin, 2015. "Genuine Savings And Sustainability," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 779-806, September.
    18. Jin, Wei & Shi, Xunpeng & Zhang, Lin, 2021. "Energy transition without dirty capital stranding," Energy Economics, Elsevier, vol. 102(C).
    19. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
    20. Ryo Horii & Masako Ikefuji, 2014. "Environment and Growth," DSSR Discussion Papers 21, Graduate School of Economics and Management, Tohoku University.

    More about this item

    Keywords

    Environmental Economics&Policies; Economic Theory&Research; Political Economy; Climate Change Economics; Climate Change Mitigation and Green House Gases;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:6230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.