IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/4602.html
   My bibliography  Save this paper

Long-term adaptation : selecting farm types across agro-ecological zones in Africa

Author

Listed:
  • Seo, Niggol
  • Mendelsohn, Robert
  • Dinar, Ariel
  • Kurukulasuriya, Pradeep
  • Hassan, Rashid

Abstract

Using economic data from more than 8,500 household surveys across 10 African countries, this paper examines whether the choice of farm type depends on the climate and agro-ecological zone of each farm. The paper also studies how farm type choice varies across farmers in each zone, using a multinomial logit choice model. Farmers are observed to choose from one of the following five types of farms: rainfed crop-only, irrigated crop-only, mixed rainfed (crop and livestock), mixed irrigated, and livestock-only farming. The authors compare current decisions against future decisions as if the only change were climate change. They focus on two climate scenarios from existing climate models: the Canadian Climate Centre scenario, which is hot and dry, and the Parallel Climate Model scenario, which is mild and wet. The results indicate that the change in farm types varies dramatically by climate scenario but also by agro-ecological zone. Policy makers must be careful to encourage the appropriate suite of measures to promote the most adapted farm type to each location.

Suggested Citation

  • Seo, Niggol & Mendelsohn, Robert & Dinar, Ariel & Kurukulasuriya, Pradeep & Hassan, Rashid, 2008. "Long-term adaptation : selecting farm types across agro-ecological zones in Africa," Policy Research Working Paper Series 4602, The World Bank.
  • Handle: RePEc:wbk:wbrwps:4602
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2008/04/17/000158349_20080417145933/Rendered/PDF/WPS4602.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    2. Pradeep Kurukulasuriya & Robert Mendelsohn & Rashid Hassan & James Benhin & Temesgen Deressa & Mbaye Diop & Helmy Mohamed Eid & K. Yerfi Fosu & Glwadys Gbetibouo & Suman Jain & Ali Mahamadou & Renneth, 2006. "Will African Agriculture Survive Climate Change?," The World Bank Economic Review, World Bank, vol. 20(3), pages 367-388.
    3. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    4. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt65s781bh, Department of Agricultural & Resource Economics, UC Berkeley.
    5. Robert Mendelsohn & William D. Nordhaus & Shaw, Daigee, 1992. "The Impact of Climate on Agriculture: A Ricardian Approach," Cowles Foundation Discussion Papers 1010, Cowles Foundation for Research in Economics, Yale University.
    6. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    7. Seo, S. Niggol & Mendelsohn, Robert, 2008. "An analysis of crop choice: Adapting to climate change in South American farms," Ecological Economics, Elsevier, vol. 67(1), pages 109-116, August.
    8. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
    9. Kurukulasuriya, Pradeep & Mendelsohn, Robert, 2007. "Endogenous irrigation : the impact of climate change on farmers in Africa," Policy Research Working Paper Series 4278, The World Bank.
    10. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 47-73, January.
    11. Seo, Niggol & Mendelsohn, Robert, 2007. "A Ricardian analysis of the impact of climate change on Latin American farms," Policy Research Working Paper Series 4163, The World Bank.
    12. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    13. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    14. Robert Mendelsohn & Ariel Dinar, 2003. "Climate, Water, and Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 328-341.
    15. S. Niggol Seo & Robert Mendelsohn, 2008. "Measuring impacts and adaptations to climate change: a structural Ricardian model of African livestock management-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 151-165, March.
    16. Seo, Niggol & Mendelsohn, Robert, 2007. "An analysisof crop choice : adapting to climate change in Latin American farms," Policy Research Working Paper Series 4162, The World Bank.
    17. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun & Rozelle, Scott & Zhang, Lijuan, 2008. "Can China continue feeding itself ? the impact of climate change on agriculture," Policy Research Working Paper Series 4470, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Juhee & Hendricks, Nathan P., 2022. "Crop Choice Decisions in Response to Soil Salinization on Irrigated Land in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322602, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Seo & Robert Mendelsohn & Ariel Dinar & Rashid Hassan & Pradeep Kurukulasuriya, 2009. "A Ricardian Analysis of the Distribution of Climate Change Impacts on Agriculture across Agro-Ecological Zones in Africa," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 313-332, July.
    2. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    3. Seo, S. Niggol & Mendelsohn, Robert, 2008. "A structural ricardian analysis of climate change impacts and adaptations in African agriculture," Policy Research Working Paper Series 4603, The World Bank.
    4. Seo, Niggol & Mendelsohn, Robert & Kurukulasuriya, Pradeep & Dinar, Ariel & Hassan, Rashid, 2008. "Differential adaptation strategies to climate change in African cropland by agro-ecological zones," Policy Research Working Paper Series 4600, The World Bank.
    5. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    6. Kan, Iddo & Kimhi, Ayal & Kaminski, Jonathan, 2015. "Climate-Change Impacts on Agriculture and Food Markets: Combining a Micro-Level Structural Land-Use Model and a Market-Level Equilibrium Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205128, Agricultural and Applied Economics Association.
    7. Fleischer, Aliza & Lichtman, Ivgenia & Mendelsohn, Robert, 2008. "Climate change, irrigation, and Israeli agriculture: Will warming be harmful?," Ecological Economics, Elsevier, vol. 65(3), pages 508-515, April.
    8. Byela Tibesigwa & Martine Visser & Jane Turpie, 2017. "Climate change and South Africa’s commercial farms: an assessment of impacts on specialised horticulture, crop, livestock and mixed farming systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 607-636, April.
    9. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    10. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun & Rozelle, Scott & Zhang, Lijuan, 2008. "Can China continue feeding itself ? the impact of climate change on agriculture," Policy Research Working Paper Series 4470, The World Bank.
    11. S. Niggol Seo, 2010. "Managing forests, livestock, and crops under global warming: a micro-econometric analysis of land use changes in Africa ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(2), pages 239-258, April.
    12. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    13. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    14. Wang, Jinxia & Mendelsohn, Robert & Dinar, Ariel & Huang, Jikun, 2008. "How China's farmers adapt to climate change," Policy Research Working Paper Series 4758, The World Bank.
    15. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    16. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    17. Balistreri, Edward J. & Tarr, David G., 2011. "Services Liberalization in Preferential Trade Arrangements: The Case of Kenya," Conference papers 332152, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    19. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    20. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.

    More about this item

    Keywords

    Crops&Crop Management Systems; Climate Change; Agriculture&Farming Systems; Livestock&Animal Husbandry; Rural Development Knowledge&Information Systems;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:4602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.