IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/10971.html
   My bibliography  Save this paper

The Timing versus Allocation Trade-off in Politically Constrained Climate Policies

Author

Listed:
  • Adam Michael Bauer
  • Stephane Hallegatte
  • Florent McIsaac

Abstract

When leaders face political economy constraints, is it best to delay all decarbonization initiatives until a sectorally coordinated strategy can be implemented, or is it preferable to implement an approach where sectors’ decarbonization strategies are uncoordinated? This question underscores a crucial trade-off – here coined the “timing versus allocation” trade-off – for politically constrained climate policymakers: (i) to sacrifice the optimal timing of climate policies to preserve the optimal allocation of emissions across economic sectors, or (ii) to preserve the optimal timing of abatement investment to the detriment of the allocation of emissions across sectors. This paper systematically explores this trade-off by presenting a modeling framework that elucidates the economic implications of various sub-optimal policy approaches to decarbonization that involve relaxing or delaying decarbonization efforts in a subset of sectors or economy-wide. The paper shows that the cost difference between an economy-wide, coordinated decarbonization strategy and an uncoordinated approach with heterogeneous carbon prices is smaller than the cost of delaying action and implementing a coordinated policy in the future. This implies that it is preferable to implement some policy in each sector, insofar as this is politically feasible, with less politically challenged sectors compensating with a marginal increase in policy ambition. The paper further elucidates how sectors with high annual emission rates, such as energy, are more costly to delay in comparison to their mid- to low-emission counterparts, such as industry, despite these sectors being nominally more costly sectors to decarbonize.

Suggested Citation

  • Adam Michael Bauer & Stephane Hallegatte & Florent McIsaac, 2024. "The Timing versus Allocation Trade-off in Politically Constrained Climate Policies," Policy Research Working Paper Series 10971, The World Bank.
  • Handle: RePEc:wbk:wbrwps:10971
    as

    Download full text from publisher

    File URL: https://documents.worldbank.org/curated/en/099144211072445400/pdf/IDU-66da2058-c283-4e56-9c65-2a33b683eb58.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. World Bank, "undated". "State and Trends of Carbon Pricing: International Carbon Markets 2024," World Bank Publications - Reports 42094, The World Bank Group.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    4. Sarah Armitage & Noël Bakhtian & Adam Jaffe, 2024. "Innovation Market Failures and the Design of New Climate Policy Instruments," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 5(1), pages 4-48.
    5. Jonas Meckling & Thomas Sterner & Gernot Wagner, 2017. "Policy sequencing toward decarbonization," Nature Energy, Nature, vol. 2(12), pages 918-922, December.
    6. Andrea Baranzini & Jeroen C. J. M. van den Bergh & Stefano Carattini & Richard B. Howarth & Emilio Padilla & Jordi Roca, 2017. "Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(4), July.
    7. Lecocq, Franck & Hourcade, Jean-Charles & Ha Duong, Minh, 1998. "Decision making under uncertainty and inertia constraints: sectoral implications of the when flexibility," Energy Economics, Elsevier, vol. 20(5-6), pages 539-555, December.
    8. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2015. "Fossil Fuel Subsidies in Indonesia: Trends, Impacts, and Reforms," ADB Reports RPT157694-2, Asian Development Bank (ADB).
    9. Michael D. Bauer & Glenn D. Rudebusch, 2023. "The Rising Cost of Climate Change: Evidence from the Bond Market," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1255-1270, September.
    10. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    11. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    12. William W. Hogan & Dale W. Jorgenson, 1991. "Productivity Trends and the Cost of Reducing CO2 Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 67-86.
    13. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    14. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    15. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    16. Derek Lemoine, 2021. "The Climate Risk Premium: How Uncertainty Affects the Social Cost of Carbon," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(1), pages 27-57.
    17. Ben Groom & Frank Venmans, 2023. "The social value of offsets," Nature, Nature, vol. 619(7971), pages 768-773, July.
    18. M. T. Dvorak & K. C. Armour & D. M. W. Frierson & C. Proistosescu & M. B. Baker & C. J. Smith, 2022. "Estimating the timing of geophysical commitment to 1.5 and 2.0 °C of global warming," Nature Climate Change, Nature, vol. 12(6), pages 547-552, June.
    19. World Bank, "undated". "State and Trends of Carbon Pricing 2024," World Bank Publications - Reports 41544, The World Bank Group.
    20. Parry, Ian W. H. & Williams III, Roberton C., 1999. "A second-best evaluation of eight policy instruments to reduce carbon emissions," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 347-373, August.
    21. World Bank, 2012. "Inclusive Green Growth : The Pathway to Sustainable Development," World Bank Publications - Books, The World Bank Group, number 6058.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    2. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
    3. Yingying Lu & David I. Stern, 2016. "Substitutability and the Cost of Climate Mitigation Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 81-107, May.
    4. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    5. Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015. "Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
    6. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    7. Michael Grubb & Jean-Francois Mercure & Pablo Salas & Rutger-Jan Lange & Ida Sognnaes, 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Working Papers EPRG 1808, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    9. Kent D. Daniel & Robert B. Litterman & Gernot Wagner, 2016. "Applying Asset Pricing Theory to Calibrate the Price of Climate Risk," NBER Working Papers 22795, National Bureau of Economic Research, Inc.
    10. Lucas Bretschger & Karen Pittel, 2020. "Twenty Key Challenges in Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 725-750, December.
    11. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    12. Peter von zur Muehlen, 2022. "Prices and Taxes in a Ramsey Climate Policy Model under Heterogeneous Beliefs and Ambiguity," Economies, MDPI, vol. 10(10), pages 1-56, October.
    13. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Policy Research Working Paper Series 6154, The World Bank.
    14. Dunz, Nepomuk & Naqvi, Asjad & Monasterolo, Irene, 2021. "Climate sentiments, transition risk, and financial stability in a stock-flow consistent model," Journal of Financial Stability, Elsevier, vol. 54(C).
    15. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    16. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    17. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    18. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    19. Stefan Dercon, 2014. "Climate change, green growth, and aid allocation to poor countries," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 30(3), pages 531-549.
    20. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
    21. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    22. Christoph Hambel & Holger Kraft & Frederick van der Ploeg, 2024. "Asset Diversification Versus Climate Action," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(3), pages 1323-1355, August.
    23. Nicholas Stern & Joseph Stiglitz & Charlotte Taylor, 2022. "The economics of immense risk, urgent action and radical change: towards new approaches to the economics of climate change," Journal of Economic Methodology, Taylor & Francis Journals, vol. 29(3), pages 181-216, July.
    24. Baldwin, Elizabeth & Cai, Yongyang & Kuralbayeva, Karlygash, 2020. "To build or not to build? Capital stocks and climate policy∗," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:10971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.