Daily and intraday application of various architectures of the LSTM model in algorithmic investment strategies on Bitcoin and the S&P 500 Index
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Illia Baranochnikov & Robert Ślepaczuk, 2022. "A comparison of LSTM and GRU architectures with novel walk-forward approach to algorithmic investment strategy," Working Papers 2022-21, Faculty of Economic Sciences, University of Warsaw.
- Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
- Schulmeister, Stephan, 2009.
"Profitability of technical stock trading: Has it moved from daily to intraday data?,"
Review of Financial Economics, Elsevier, vol. 18(4), pages 190-201, October.
- Stephan Schulmeister, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, John Wiley & Sons, vol. 18(4), pages 190-201, October.
- Stephan Schulmeister, 2007. "The Profitability of Technical Stock Trading has Moved from Daily to Intraday Data," WIFO Working Papers 289, WIFO.
- Stephan Schulmeister, 2008. "Profitability of Technical Stock Trading: Has it Moved from Daily to Intraday Data?," WIFO Working Papers 323, WIFO.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Wun-Hua Chen & Jen-Ying Shih & Soushan Wu, 2006. "Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets," International Journal of Electronic Finance, Inderscience Enterprises Ltd, vol. 1(1), pages 49-67.
- Jan Grudniewicz & Robert Ślepaczuk, 2021. "Application of machine learning in quantitative investment strategies on global stock markets," Working Papers 2021-23, Faculty of Economic Sciences, University of Warsaw.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kamil Kashif & Robert 'Slepaczuk, 2024.
"LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies,"
Papers
2406.18206, arXiv.org.
- Kamil Kashif & Robert Ślepaczuk, 2024. "LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies," Working Papers 2024-07, Faculty of Economic Sciences, University of Warsaw.
- Karol Chojnacki & Robert Ślepaczuk, 2023. "This study compares well-known tools of technical analysis (Moving Average Crossover MAC) with Machine Learning based strategies (LSTM and XGBoost) and Ensembled Machine Learning Strategies (LSTM ense," Working Papers 2023-15, Faculty of Economic Sciences, University of Warsaw.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bartosz Bieganowski & Robert 'Slepaczuk, 2024. "Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data," Papers 2411.12753, arXiv.org, revised Nov 2024.
- Bartosz Bieganowski & Robert Ślepaczuk, 2024.
"Supervised Autoencoder MLP for Financial Time Series Forecasting,"
Working Papers
2024-03, Faculty of Economic Sciences, University of Warsaw.
- Bartosz Bieganowski & Robert Slepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Papers 2404.01866, arXiv.org, revised Jun 2024.
- Immonen, Eero, 2015. "A quantitative description for efficient financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 171-181.
- Mu-En Wu & Wei-Ho Chung, 2019. "Empirical Evaluations on Momentum Effects of Taiwan Index Futures via Stop-Loss and Stop-Profit Mechanisms," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 629-648, March.
- Yu, Huaibing, 2024. "Why isn't composite equity issuance favored by the stock market? A risk-based explanation for the anomaly," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Patrick Buckley & Fergal O’Brien, 0. "The effect of malicious manipulations on prediction market accuracy," Information Systems Frontiers, Springer, vol. 0, pages 1-13.
- Kin-Boon Tang & Shao-Jye Wong & Shih-Kuei Lin & Szu-Lang Liao, 2020. "Excess volatility and market efficiency in government bond markets: the ASEAN-5 context," Journal of Asset Management, Palgrave Macmillan, vol. 21(2), pages 154-165, March.
- Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
- Gerritsen, Dirk F., 2016. "Are chartists artists? The determinants and profitability of recommendations based on technical analysis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 179-196.
- Hakob GRIGORYAN, 2015. "Stock Market Prediction using Artificial Neural Networks. Case Study of TAL1T, Nasdaq OMX Baltic Stock," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 6(2), pages 14-23, October.
- Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
- Patrick Buckley & Fergal O’Brien, 2017. "The effect of malicious manipulations on prediction market accuracy," Information Systems Frontiers, Springer, vol. 19(3), pages 611-623, June.
- Rocha Filho, Tareísio M. & Rocha, Paulo M.M., 2020. "Evidence of inefficiency of the Brazilian stock market: The IBOVESPA future contracts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Vasilios Sogiakas, 2017. "Efficiency of the UK Stock Exchange," Journal of Risk & Control, Risk Market Journals, vol. 4(1), pages 51-69.
- Nunes, Mauro Fracarolli, 2018. "Supply chain contamination: An exploratory approach on the collateral effects of negative corporate events," European Management Journal, Elsevier, vol. 36(4), pages 573-587.
- Batten, Jonathan A. & Lucey, Brian M. & McGroarty, Frank & Peat, Maurice & Urquhart, Andrew, 2018. "Does intraday technical trading have predictive power in precious metal markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 102-113.
- Menkhoff, Lukas, 2010.
"The use of technical analysis by fund managers: International evidence,"
Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
- Menkhoff, Lukas, 2010. "The Use of Technical Analysis by Fund Managers: International Evidence," Hannover Economic Papers (HEP) dp-446, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Stephan Schulmeister, 2009. "Technical Trading and Trends in the Dollar-Euro Exchange Rate," WIFO Studies, WIFO, number 37582.
- Stephan Schulmeister, 2014. "A General Financial Transactions Tax. Motives, Effects and Implementation According to the Proposal of the European Commission," WIFO Working Papers 461, WIFO.
- Damian Pastor & Pavel Kisela & Viliam Kovac & Tomas Sabol & Viliam Vajda, 2015. "Application Of Market Valuation Models In Portfolio Management," Polish Journal of Management Studies, Czestochowa Technical University, Department of Management, vol. 12(1), pages 154-165, DEcember.
More about this item
Keywords
machine learning; deep learning; recurrent neural networks; LSTM; algorithmic trading; ensemble investment strategy; intra-day trading; S&P 500 Index; Bitcoin;All these keywords.
JEL classification:
- C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-12-05 (Big Data)
- NEP-CMP-2022-12-05 (Computational Economics)
- NEP-FMK-2022-12-05 (Financial Markets)
- NEP-PAY-2022-12-05 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2022-25. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.