IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p641-d1592135.html
   My bibliography  Save this article

Sectoral Efficiency and Resilience: A Multifaceted Analysis of S&P Global BMI Indices Under Global Crises

Author

Listed:
  • Milena Kojić

    (Institute of Economic Sciences, Zmaj Jovina 12, 11000 Belgrade, Serbia)

  • Slobodan Rakić

    (Global Association of Risk Professionals, 111 Town Square Place, Jersey City, NJ 07310, USA)

  • José Wesley Lima da Silva

    (Department of Statistics and Informatics, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil)

  • Fernando Henrique Antunes de Araujo

    (Federal Institute of Education Science and Technology of Paraíba, Campus Patos PB, Acesso Rodovia PB 110, S/N, Alto da Tubiba, Patos 58700-030, PB, Brazil)

Abstract

This study investigates the complexity, efficiency, and sectoral interdependencies of the S&P Global BMI indices during critical global events, including the COVID-19 pandemic and the Russia–Ukraine war. The analysis is conducted in three dimensions: (1) evaluating market efficiency using permutation entropy and the Fisher information measure, (2) exploring sectoral alignments through clustering techniques (hierarchical and k-means clustering), and (3) assessing the influence of geopolitical risk using Multifractal Detrended Cross-Correlation Analysis (MFDCCA). The results highlight significant variations in informational efficiency across sectors, with Utilities and Consumer Staples exhibiting high efficiency, while Emerging Markets and Financials reflect lower efficiency levels. Temporal analysis reveals widespread efficiency declines during the pandemic, followed by mixed recovery patterns during the Ukraine conflict. Clustering analysis uncovers dynamic shifts in sectoral relationships, emphasizing the resilience of defensive sectors and the unique behavior of Developed BMI throughout crises. MFDCCA further demonstrates the multifractality in cross-correlations with geopolitical risk, with Consumer Staples and Energy showing stable persistence and Information Technology exhibiting sensitive complexity. These findings emphasize the adaptive nature of global markets in response to systemic and geopolitical shocks, offering insights for risk management and investment strategies.

Suggested Citation

  • Milena Kojić & Slobodan Rakić & José Wesley Lima da Silva & Fernando Henrique Antunes de Araujo, 2025. "Sectoral Efficiency and Resilience: A Multifaceted Analysis of S&P Global BMI Indices Under Global Crises," Mathematics, MDPI, vol. 13(4), pages 1-26, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:641-:d:1592135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/641/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/641/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Achraf Ghorbel & Ahmed Jeribi, 2021. "Volatility spillovers and contagion between energy sector and financial assets during COVID-19 crisis period," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 449-467, September.
    3. Sa Xu & Ziqing Du & Hai Zhang, 2020. "Can Crude Oil Serve as a Hedging Asset for Underlying Securities?—Research on the Heterogenous Correlation between Crude Oil and Stock Index," Energies, MDPI, vol. 13(12), pages 1-19, June.
    4. Wong, Woon K., 2010. "Backtesting value-at-risk based on tail losses," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 526-538, June.
    5. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    6. Kevin Dowd & John Cotter & Ghulam Sorwar, 2008. "Spectral Risk Measures: Properties and Limitations," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 61-75, August.
    7. Chen, Shengming & Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "The Russia–Ukraine war and energy market volatility: A novel application of the volatility ratio in the context of natural gas," Resources Policy, Elsevier, vol. 85(PA).
    8. Upadhyay, Shashankaditya & Banerjee, Anirban & Panigrahi, Prasanta K., 2020. "Causal evolution of global crisis in financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    9. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    10. Shahzad, Umer & Mohammed, Kamel Si & Tiwari, Sunil & Nakonieczny, Joanna & Nesterowicz, Renata, 2023. "Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Ukraine conflict perspective," Resources Policy, Elsevier, vol. 80(C).
    11. Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
    12. Sahnaz Kocoglu & Aybuke Yalcin & Cemre Eda Erkilic, 2023. "Best performing stock market sectors of COVID-19 era: factors behind the success of healthcare and consumer staples sectors," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 26(3), pages 307-324.
    13. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    14. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    15. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    16. Alexakis, Christos & Pappas, Vasileios, 2018. "Sectoral dynamics of financial contagion in Europe - The cases of the recent crises episodes," Economic Modelling, Elsevier, vol. 73(C), pages 222-239.
    17. Christos Alexakis & Vasileios Pappas, 2018. "Sectoral dynamics of financial contagion in Europe - The cases of the recent crises episodes," Post-Print hal-01992102, HAL.
    18. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    2. Zhu, Bo & Lin, Renda & Deng, Yuanyue & Chen, Pingshe & Chevallier, Julien, 2021. "Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises," Economic Modelling, Elsevier, vol. 105(C).
    3. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    4. Hasan, Md. Bokhtiar & Hassan, M. Kabir & Alhomaidi, Asem, 2023. "How do sectoral Islamic equity markets react to geopolitical risk, economic policy uncertainty, and oil price shocks?," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    5. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Analysis of the efficiency and multifractality of gold markets based on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 817-827.
    6. Liu, Jiahao & Shen, Wenyu, 2024. "Financial instability in Europe: Does geopolitical risk from proximate countries and trading partners matter?," Finance Research Letters, Elsevier, vol. 66(C).
    7. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    8. Kin-Boon Tang & Shao-Jye Wong & Shih-Kuei Lin & Szu-Lang Liao, 2020. "Excess volatility and market efficiency in government bond markets: the ASEAN-5 context," Journal of Asset Management, Palgrave Macmillan, vol. 21(2), pages 154-165, March.
    9. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    10. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    11. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    12. Faheem Aslam & Paulo Ferreira & Haider Ali & Ana Ercília José, 2022. "Application of Multifractal Analysis in Estimating the Reaction of Energy Markets to Geopolitical Acts and Threats," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    13. Jian Zhou & Gao-Feng Gu & Zhi-Qiang Jiang & Xiong Xiong & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2017. "Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 50(4), pages 579-594, December.
    14. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    15. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    16. Soren Bettels & Sojung Kim & Stefan Weber, 2022. "Multinomial Backtesting of Distortion Risk Measures," Papers 2201.06319, arXiv.org, revised Aug 2024.
    17. Miguel Ángel Sánchez & Juan E Trinidad & José García & Manuel Fernández, 2015. "The Effect of the Underlying Distribution in Hurst Exponent Estimation," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-17, May.
    18. Md Akhtaruzzaman & Ramzi Benkraiem & Sabri Boubaker & Constantin Zopounidis, 2022. "COVID‐19 crisis and risk spillovers to developing economies: Evidence from Africa," Journal of International Development, John Wiley & Sons, Ltd., vol. 34(4), pages 898-918, May.
    19. Bachar Fakhry & Christian Richter, 2015. "Is the sovereign debt market efficient? Evidence from the US and German sovereign debt markets," International Economics and Economic Policy, Springer, vol. 12(3), pages 339-357, September.
    20. Thomas Delcey, 2019. "Samuelson vs Fama on the Efficient Market Hypothesis: The Point of View of Expertise [Samuelson vs Fama sur l’efficience informationnelle des marchés financiers : le point de vue de l’expertise]," Post-Print hal-01618347, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:641-:d:1592135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.