IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v21y2019i1d10.1007_s10796-018-9859-2.html
   My bibliography  Save this article

Extracting Knowledge from Technical Reports for the Valuation of West Texas Intermediate Crude Oil Futures

Author

Listed:
  • Joseph D. Prusa

    (Florida Atlantic University)

  • Ryan T. Sagul

    (Florida Atlantic University)

  • Taghi M. Khoshgoftaar

    (Florida Atlantic University)

Abstract

This paper proposes and demonstrates an approach for the often-attempted problem of market prediction, framed as classification task. We restrict our study to a widely purchased and well recognized commodity, West Texas Intermediate crude oil, which experiences significant volatility. For this purpose, nine learners using features extracted from monthly International Energy Agency (IEA) reports to predict undervalued, overvalued, and accurate valuation of the oil futures between 2003 and 2015. The often touted “Efficient Market Hypothesis” (EMH) suggests that it is impossible for individual investors to “beat the market” as market and external forces, such as geopolitical crises and natural disasters, are nearly impossible to predict. However, four algorithms were statistically better at the 95% confidence interval than “Zero-Rule” and “Random-Guess” strategies which are expected to pseudo-reflect the EMH. Furthermore, the addition of text features can significantly improve performance compared to only using price history from the oil futures data, challenging the validity of the semi-strong versions of the EMH in the crude oil market.

Suggested Citation

  • Joseph D. Prusa & Ryan T. Sagul & Taghi M. Khoshgoftaar, 2019. "Extracting Knowledge from Technical Reports for the Valuation of West Texas Intermediate Crude Oil Futures," Information Systems Frontiers, Springer, vol. 21(1), pages 109-123, February.
  • Handle: RePEc:spr:infosf:v:21:y:2019:i:1:d:10.1007_s10796-018-9859-2
    DOI: 10.1007/s10796-018-9859-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-018-9859-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-018-9859-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael C. Jensen, 1968. "The Performance Of Mutual Funds In The Period 1945–1964," Journal of Finance, American Finance Association, vol. 23(2), pages 389-416, May.
    2. Graham, John R. & Harvey, Campbell R., 1996. "Market timing ability and volatility implied in investment newsletters' asset allocation recommendations," Journal of Financial Economics, Elsevier, vol. 42(3), pages 397-421, November.
    3. Kenneth A. Froot & Jeffrey A. Frankel, 1989. "Forward Discount Bias: Is it an Exchange Risk Premium?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 104(1), pages 139-161.
    4. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    5. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
    6. Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
    7. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    8. Choi, Kyongwook & Hammoudeh, Shawkat, 2010. "Volatility behavior of oil, industrial commodity and stock markets in a regime-switching environment," Energy Policy, Elsevier, vol. 38(8), pages 4388-4399, August.
    9. Sun, Andrew & Lachanski, Michael & Fabozzi, Frank J., 2016. "Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 272-281.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. David Laibson, 1997. "Golden Eggs and Hyperbolic Discounting," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 112(2), pages 443-478.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcus Vinicius Santos & Fernando Morgado-Dias & Thiago C. Silva, 2023. "Oil Sector and Sentiment Analysis—A Review," Energies, MDPI, vol. 16(12), pages 1-29, June.
    2. Benjamin Clapham & Michael Siering & Peter Gomber, 2021. "Popular News Are Relevant News! How Investor Attention Affects Algorithmic Decision-Making and Decision Support in Financial Markets," Information Systems Frontiers, Springer, vol. 23(2), pages 477-494, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashok Chakravarti, 2012. "Institutions, Economic Performance and the Visible Hand," Books, Edward Elgar Publishing, number 14751.
    2. Thanh Huong Nguyen, 2019. "Information and Noise in Stock Markets: Evidence on the Determinants and Effects Using New Empirical Measures," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 7-2019, January-A.
    3. Thomas Delcey, 2019. "Samuelson vs Fama on the Efficient Market Hypothesis: The Point of View of Expertise [Samuelson vs Fama sur l’efficience informationnelle des marchés financiers : le point de vue de l’expertise]," Post-Print hal-01618347, HAL.
    4. Meredith Beechey & David Gruen & James Vickery, 2000. "The Efficient Market Hypothesis: A Survey," RBA Research Discussion Papers rdp2000-01, Reserve Bank of Australia.
    5. Roberto Casarin & Andrea Piva & Loriana Pelizzon, 2008. "Italian Equity Funds: Efficiency and Performance Persistence," The IUP Journal of Financial Economics, IUP Publications, vol. 0(1), pages 7-28, March.
    6. Kin-Boon Tang & Shao-Jye Wong & Shih-Kuei Lin & Szu-Lang Liao, 2020. "Excess volatility and market efficiency in government bond markets: the ASEAN-5 context," Journal of Asset Management, Palgrave Macmillan, vol. 21(2), pages 154-165, March.
    7. Roland Rothenstein, 2018. "Quantification of market efficiency based on informational-entropy," Papers 1812.02371, arXiv.org.
    8. Bradley Jones, 2015. "Asset Bubbles: Re-thinking Policy for the Age of Asset Management," IMF Working Papers 2015/027, International Monetary Fund.
    9. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    10. Wagner, Moritz & Margaritis, Dimitris, 2017. "All about fun(ds) in emerging markets? The case of equity mutual funds," Emerging Markets Review, Elsevier, vol. 33(C), pages 62-78.
    11. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    12. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    13. Ferson, Wayne E., 2013. "Investment Performance: A Review and Synthesis," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 969-1010, Elsevier.
    14. Hao Jiang & Marno Verbeek & Yu Wang, 2014. "Information Content When Mutual Funds Deviate from Benchmarks," Management Science, INFORMS, vol. 60(8), pages 2038-2053, August.
    15. Dahlquist, Magnus & Odegaard, Bernt Arne, 2018. "A Review of Norges Bank's Active Management of the Government Pension Fund Global," UiS Working Papers in Economics and Finance 2018/1, University of Stavanger.
    16. Mike Kraehenbuehl & Joerg Osterrieder, 2022. "The Efficient Market Hypothesis for Bitcoin in the context of neural networks," Papers 2208.07254, arXiv.org.
    17. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    18. Annaert, Jan & van den Broeck, Julien & Vander Vennet, Rudi, 2003. "Determinants of mutual fund underperformance: A Bayesian stochastic frontier approach," European Journal of Operational Research, Elsevier, vol. 151(3), pages 617-632, December.
    19. Subrata Roy, 2016. "Another Look in Conditioning Alphas on Economic Information: Indian Evidence," Global Business Review, International Management Institute, vol. 17(1), pages 191-213, February.
    20. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:21:y:2019:i:1:d:10.1007_s10796-018-9859-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.