Machine learning in algorithmic trading strategy optimization - implementation and efficiency
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gunasekarage, Abeyratna & Power, David M., 2001. "The profitability of moving average trading rules in South Asian stock markets," Emerging Markets Review, Elsevier, vol. 2(1), pages 17-33, March.
- Ardia, David & Boudt, Kris & Carl, Peter & Mullen, Katharine M. & Peterson, Brian, 2010. "Differential Evolution (DEoptim) for Non-Convex Portfolio Optimization," MPRA Paper 22135, University Library of Munich, Germany.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kamil Korzeń & Robert Ślepaczuk, 2019. "Hybrid Investment Strategy Based on Momentum and Macroeconomic Approach," Working Papers 2019-17, Faculty of Economic Sciences, University of Warsaw.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ryś Przemysław & Ślepaczuk Robert, 2018. "Machine Learning Methods in Algorithmic Trading Strategy Optimization – Design and Time Efficiency," Central European Economic Journal, Sciendo, vol. 5(52), pages 206-229, January.
- Bilel JARRAYA, 2013.
"Asset Allocation And Portfolio Optimization Problems With Metaheuristics: A Literature Survey,"
Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 3(4), pages 38-56, December.
- Jarraya, Bilel, 2013. "Asset allocation and portfolio optimization problems with metaheuristics: a literature survey," MPRA Paper 53698, University Library of Munich, Germany, revised 2013.
- Abeyratna Gunasekarage & Anirut Pisedtasalasai & David M. Power, 2004. "Macroeconomic Influence on the Stock Market: Evidence from an Emerging Market in South Asia," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 3(3), pages 285-304, December.
- Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
- Chris Doucouliagos, 2005.
"Price exhaustion and number preference: time and price confluence in Australian stock prices,"
The European Journal of Finance, Taylor & Francis Journals, vol. 11(3), pages 207-221.
- Doucouliagos, Hristos, 2003. "Price exhaustion and number preference: time and price confluence in Australian stock prices," Working Papers eco_2003_06, Deakin University, Department of Economics.
- Mullen, Katharine M. & Ardia, David & Gil, David L. & Windover, Donald & Cline, James, 2011.
"DEoptim: An R Package for Global Optimization by Differential Evolution,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i06).
- Mullen, Katharine M. & Ardia, David & Gil, David L. & Windover, Donald & Cline, James, 2009. "DEoptim: An R Package for Global Optimization by Differential Evolution," MPRA Paper 21743, University Library of Munich, Germany, revised 26 Dec 2010.
- Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
- Chong, Terence Tai-Leung & Ip, Hugo Tak-Sang, 2009.
"Do momentum-based strategies work in emerging currency markets?,"
Pacific-Basin Finance Journal, Elsevier, vol. 17(4), pages 479-493, September.
- Hugo Tak-Sang, IP & Terence Tai-Leung, Chong, 2006. "Do Momentum-based Strategies Work in Emerging Currency Markets?," Departmental Working Papers _181, Chinese University of Hong Kong, Department of Economics.
- Yen-Sen Ni & Jen-Tsai Lee & Yi-Ching Liao, 2013. "Do variable length moving average trading rules matter during a financial crisis period?," Applied Economics Letters, Taylor & Francis Journals, vol. 20(2), pages 135-141, February.
- Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014.
"Revisiting the Performance of MACD and RSI Oscillators,"
JRFM, MDPI, vol. 7(1), pages 1-12, February.
- Chong, Terence Tai-Leung & Ng, Wing-Kam & Liew, Venus Khim-Sen, 2014. "Revisiting the Performance of MACD and RSI Oscillators," MPRA Paper 54149, University Library of Munich, Germany.
- Narayan, Paresh Kumar & Phan, Dinh Hoang Bach & Bannigidadmath, Deepa, 2017. "Is the profitability of Indian stocks compensation for risks?," Emerging Markets Review, Elsevier, vol. 31(C), pages 47-64.
- Afiruddin Tapa* & Mohd Hasimi Yaacob & Ahmad Husni Hamzah & Yean Soh Chuen, 2018. "Trading Performance Analysis: A Comparisons Between the Original MA Crossover and Modified MA Crossover Strategy," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 933-941:6.
- Groenewold, Nicolaas & Kan Tang, Sam Hak & Wu, Yanrui, 2008. "The profitability of regression-based trading rules for the Shanghai stock market," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 411-430.
- Matheus José Silva de Souza & Danilo Guimarães Franco Ramos & Marina Garcia Pena & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Examination of the profitability of technical analysis based on moving average strategies in BRICS," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-18, December.
- Stephan Schulmeister, 2009.
"Profitability of technical stock trading: Has it moved from daily to intraday data?,"
Review of Financial Economics, John Wiley & Sons, vol. 18(4), pages 190-201, October.
- Schulmeister, Stephan, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, Elsevier, vol. 18(4), pages 190-201, October.
- Stephan Schulmeister, 2007. "The Profitability of Technical Stock Trading has Moved from Daily to Intraday Data," WIFO Working Papers 289, WIFO.
- Stephan Schulmeister, 2008. "Profitability of Technical Stock Trading: Has it Moved from Daily to Intraday Data?," WIFO Working Papers 323, WIFO.
- Md. Abu HASAN, 2017. "Efficiency and Volatility of the Stock Market in Bangladesh: A Macroeconometric Analysis," Turkish Economic Review, KSP Journals, vol. 4(2), pages 239-249, June.
- Thushari Vidanage & O.G. Dayaratna-Banda, 2012. "Does Past Information Help Predict Future Price Movements in Emerging Capital Markets? Evidence from the Colombo Securities Exchange," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 13(2), pages 241-264, September.
- Stefanescu, Răzvan & Dumitriu, Ramona, 2015. "Buy and sell signals on Bucharest Stock Exchange," MPRA Paper 89014, University Library of Munich, Germany, revised 05 Jan 2016.
- Jun-Cheng Chen & Cong-Xiao Chen & Li-Juan Duan & Zhi Cai, 2022. "DDPG based on multi-scale strokes for financial time series trading strategy," Papers 2207.10071, arXiv.org.
- Lakshman Alles, 2008. "The cost of downside protection and the time diversification issue in South Asian stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 835-843.
More about this item
Keywords
machine learning; algorithm; trading; investment; automatization; strategy; optimization; differential evolutionary method; cross-validation; overfitting;All these keywords.
JEL classification:
- C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-12-10 (Big Data)
- NEP-CMP-2018-12-10 (Computational Economics)
- NEP-ORE-2018-12-10 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2018-25. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.