DEoptim: An R Package for Global Optimization by Differential Evolution
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Mullen, Katharine M. & Ardia, David & Gil, David L. & Windover, Donald & Cline, James, 2011. "DEoptim: An R Package for Global Optimization by Differential Evolution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i06).
References listed on IDEAS
- Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
- Dueker, Michael J, 1997.
"Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
- Michael J. Dueker, 1995. "Markov switching in GARCH processes and mean reverting stock market volatility," Working Papers 1994-015, Federal Reserve Bank of St. Louis.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Jan Börner & Steven I. Higgins & Jochen Kantelhardt & Simon Scheiter, 2007. "Rainfall or price variability: what determines rangeland management decisions? A simulation‐optimization approach to South African savannas," Agricultural Economics, International Association of Agricultural Economists, vol. 37(2‐3), pages 189-200, September.
- Higgins, Steven I. & Kantelhardt, Jochen & Scheiter, Simon & Boerner, Jan, 2007. "Sustainable management of extensively managed savanna rangelands," Ecological Economics, Elsevier, vol. 62(1), pages 102-114, April.
- Ardia, David & Boudt, Kris & Carl, Peter & Mullen, Katharine M. & Peterson, Brian, 2010. "Differential Evolution (DEoptim) for Non-Convex Portfolio Optimization," MPRA Paper 22135, University Library of Munich, Germany.
- Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
- David Ardia, 2008. "Financial Risk Management with Bayesian Estimation of GARCH Models," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-78657-3, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:jss:jstsof:40:i06 is not listed on IDEAS
- Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
- Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
- Abdellah Tahiri & Brahim Benaid & Hassane Bouzahir & Naushad Ali Mamode Khan, 2021. "Testing for the Number of Regimes in Financial Time Series GARCH Volatility," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 9(2), pages 82-94.
- Ardia, David & Hoogerheide, Lennart F., 2010.
"Efficient Bayesian estimation and combination of GARCH-type models,"
MPRA Paper
22919, University Library of Munich, Germany.
- David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
- Eduardo Rossi, 2010. "Univariate GARCH models: a survey (in Russian)," Quantile, Quantile, issue 8, pages 1-67, July.
- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016.
"Efficient Gibbs sampling for Markov switching GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
- Monica Billio & Roberto Casarin & Anthony Osuntuyi, 2012. "Efficient Gibbs Sampling for Markov Switching GARCH Models," Working Papers 2012:35, Department of Economics, University of Venice "Ca' Foscari".
- Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
- Monica Billio & Roberto Casarin & Matteo Iacopini, 2024.
"Bayesian Markov-Switching Tensor Regression for Time-Varying Networks,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 109-121, January.
- Monica Billio & Roberto Casarin & Matteo Iacopini, 2018. "Bayesian Markov Switching Tensor Regression for Time-varying Networks," Working Papers 2018:14, Department of Economics, University of Venice "Ca' Foscari".
- Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2020. "Markov-Switching Stochastic Processes in an Active Trading Algorithm in the Main Latin-American Stock Markets," Mathematics, MDPI, vol. 8(6), pages 1-23, June.
- Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
- AUGUSTYNIAK, Maciej & BAUWENS, Luc & DUFAYS, Arnaud, 2016.
"A New Approach to Volatility Modeling : The High-Dimensional Markov Model,"
LIDAM Discussion Papers CORE
2016042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Arnaud Dufays & Maciej Augustyniak & Luc Bauwens, 2016. "A new approach to volatility modeling: the High-Dimensional Markov model," Cahiers de recherche 1609, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
- Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
- David Ardia, 2009.
"Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations,"
Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, March.
- Ardia, David, 2007. "Bayesian Estimation of a Markov-Switching Threshold Asymmetric GARCH Model with Student-t Innovations," DQE Working Papers 6, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 08 Jul 2008.
- Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
- Ryan Lemand, 2003. "The Contagion Effect Between the Volatilities of the NASDAQ-100 and the IT.CA :A Univariate and A Bivariate Switching Approach," Econometrics 0307002, University Library of Munich, Germany, revised 07 Dec 2020.
More about this item
Keywords
global optimization; evolutionary algorithm; differential evolution; R software;All these keywords.
JEL classification:
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2010-04-11 (Computational Economics)
- NEP-EVO-2010-04-11 (Evolutionary Economics)
- NEP-ORE-2010-04-11 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:21743. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.