Dynamic analysis of multivariate panel data with nonlinear transformations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter Molenaar & Jan Gooijer & Bernhard Schmitz, 1992. "Dynamic factor analysis of nonstationary multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 333-349, September.
- Michael Browne, 1992. "Circumplex models for correlation matrices," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 469-497, December.
- David Rogosa & John Willett, 1985. "Understanding correlates of change by modeling individual differences in growth," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 203-228, June.
- Rolf Langeheine & Frank Van De Pol, 1990. "A Unifying Framework for Markov Modeling in Discrete Space and Discrete Time," Sociological Methods & Research, , vol. 18(4), pages 416-441, May.
- Frank Van De Pol & Jan De Leeuw, 1986. "A Latent Markov Model to Correct for Measurement Error," Sociological Methods & Research, , vol. 15(1-2), pages 118-141, November.
- Peter Molenaar, 1985. "A dynamic factor model for the analysis of multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 181-202, June.
- Catrien Bijleveld & Jan Leeuw, 1991. "Fitting longitudinal reduced-rank regression models by alternating least squares," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 433-447, September.
- Stef Buuren, 1997. "Fitting arma time series by structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 215-236, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stef Buuren, 1997. "Fitting arma time series by structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 215-236, June.
- Sun-Joo Cho & Sarah Brown-Schmidt & Woo-yeol Lee, 2018. "Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 751-771, September.
- Peter Molenaar & John Nesselroade, 2001. "Rotation in the dynamic factor modeling of multivariate stationary time series," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 99-107, March.
- Nikolaos Zirogiannis & Yorghos Tripodis, 2018. "Dynamic factor analysis for short panels: estimating performance trajectories for water utilities," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 131-150, March.
- Peter Molenaar, 1999. "Comment on fitting MA time series by structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 91-94, March.
- Galeano, Pedro, 2001. "Multivariate analysis in vector time series," DES - Working Papers. Statistics and Econometrics. WS ws012415, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Fei Gu & Kristopher J. Preacher & Emilio Ferrer, 2014. "A State Space Modeling Approach to Mediation Analysis," Journal of Educational and Behavioral Statistics, , vol. 39(2), pages 117-143, April.
- Guangjian Zhang & Sy-Miin Chow & Anthony Ong, 2011. "A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 77-96, January.
- Carfora, Alfonso & Scandurra, Giuseppe & Thomas, Antonio, 2022. "Forecasting the COVID-19 effects on energy poverty across EU member states," Energy Policy, Elsevier, vol. 161(C).
- Dimitris Pavlopoulos & Ruud Muffels & Jeroen K. Vermunt, 2009. "Training and Low‐pay Mobility: The Case of the UK and the Netherlands," LABOUR, CEIS, vol. 23(s1), pages 37-59, March.
- Acedo, Francisco J. & Coviello, Nicole & Agustí, María, 2021. "Caution ahead! The long-term effects of initial export intensity and geographic dispersion on INV development," Journal of World Business, Elsevier, vol. 56(6).
- Federico Aime & Aaron D. Hill & Jason W. Ridge, 2020. "Looking for respect? How prior TMT social comparisons affect executives' new TMT engagements," Strategic Management Journal, Wiley Blackwell, vol. 41(12), pages 2185-2199, December.
- Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
- Kennon M. Sheldon & Evgeny N. Osin & Tamara O. Gordeeva & Dmitry D. Suchkov & Vlaidslav V. Bobrov & Elena I. Rasskazova & Oleg A. Sychev, 2015. "Evaluating the Dimensionality of the Relative Autonomy Continuum in Us and Russian Samples," HSE Working papers WP BRP 48/PSY/2015, National Research University Higher School of Economics.
- Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
- Sacha Epskamp, 2020. "Psychometric network models from time-series and panel data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 206-231, March.
- Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Jianhong Shen, 2020. "Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 154-184, March.
- Chang, Lei & Gan, Xiaojun & Mohsin, Muhammad, 2022. "Studying corporate liquidity and regulatory responses for economic recovery in COVID-19 crises," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 211-225.
- Krijnen, Wim P., 2006. "Convergence of the sequence of parameters generated by alternating least squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 481-489, November.
- Eichler, Michael & Motta, Giovanni & von Sachs, Rainer, 2011.
"Fitting dynamic factor models to non-stationary time series,"
Journal of Econometrics, Elsevier, vol. 163(1), pages 51-70, July.
- Eichler, M. & Motta, G. & von Sachs, R., 2009. "Fitting dynamic factor models to non-stationary time series," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
More about this item
JEL classification:
- C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2002-03-14 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vua:wpaper:1997-54. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: R. Dam (email available below). General contact details of provider: https://edirc.repec.org/data/fewvunl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.