IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v181y2010i1p683-70810.1007-s10479-009-0636-y.html
   My bibliography  Save this article

Optimal selection of a portfolio of options under Value-at-Risk constraints: a scenario approach

Author

Listed:
  • M. Schyns
  • Y. Crama
  • G. Hübner

Abstract

This paper introduces a multiperiod model for the optimal selection of a financial portfolio of options linked to a single index. The objective of the model is to maximize the expected return of the portfolio under constraints limiting its Value-at-Risk. We rely on scenarios to represent future security prices. The model contains several interesting features, like the consideration of transaction costs, bid-ask spreads, arbitrage-free option pricing, and the possibility to rebalance the portfolio with options introduced at the start of each period. The resulting mixed integer programming model is applied to realistic test instances involving options on the S&P500 index. In spite of the large size and of the numerical difficulty of this model, near-optimal solutions can be computed by a standard branch-and-cut solver or by a specialized heuristic. The structure and the financial features of the selected portfolios are also investigated. Copyright Springer Science+Business Media, LLC 2010

Suggested Citation

  • M. Schyns & Y. Crama & G. Hübner, 2010. "Optimal selection of a portfolio of options under Value-at-Risk constraints: a scenario approach," Annals of Operations Research, Springer, vol. 181(1), pages 683-708, December.
  • Handle: RePEc:spr:annopr:v:181:y:2010:i:1:p:683-708:10.1007/s10479-009-0636-y
    DOI: 10.1007/s10479-009-0636-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0636-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0636-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dybvig, Philip H, 1988. "Distributional Analysis of Portfolio Choice," The Journal of Business, University of Chicago Press, vol. 61(3), pages 369-393, July.
    2. Yiu, K. F. C., 2004. "Optimal portfolios under a value-at-risk constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1317-1334, April.
    3. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    4. Philip H. Dybvig, 1988. "Inefficient Dynamic Portfolio Strategies or How to Throw Away a Million Dollars in the Stock Market," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 67-88.
    5. Muzzioli, S. & Torricelli, C., 2005. "The pricing of options on an interval binomial tree. An application to the DAX-index option market," European Journal of Operational Research, Elsevier, vol. 163(1), pages 192-200, May.
    6. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    7. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," European Journal of Operational Research, Elsevier, vol. 101(2), pages 374-392, September.
    8. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    9. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    10. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
    11. M. Gilli & E. Kellezi & H. Hysi, 2006. "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Computing in Economics and Finance 2006 355, Society for Computational Economics.
    12. Philippe Bertrand & Jean-Luc Prigent, 2005. "Portfolio Insurance Strategies: OBPI versus CPPI," Post-Print hal-01833077, HAL.
    13. Kallio, Markku & Ziemba, William T., 2007. "Using Tucker's theorem of the alternative to simplify, review and expand discrete arbitrage theory," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2281-2302, August.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," Serie Research Memoranda 0011, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    16. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    17. Cees Dert & Bart Oldenkamp, 2000. "Optimal Guaranteed Return Portfolios and the Casino Effect," Operations Research, INFORMS, vol. 48(5), pages 768-775, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
    2. An Chen & Thai Nguyen & Mitja Stadje, 2018. "Risk management with multiple VaR constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 297-337, October.
    3. Akhter Mohiuddin Rather, 2012. "Portfolio selection using mean-risk model and mean-risk diversification model," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 14(3), pages 324-342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    3. Mitra, Sovan & Lim, Sungmook & Karathanasopoulos, Andreas, 2019. "Regression based scenario generation: Applications for performance management," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Pieter Klaassen, 2002. "Comment on "Generating Scenario Trees for Multistage Decision Problems"," Management Science, INFORMS, vol. 48(11), pages 1512-1516, November.
    5. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    6. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    7. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    8. Almeida, Caio & Vicente, José, 2009. "Are interest rate options important for the assessment of interest rate risk?," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1376-1387, August.
    9. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    10. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    11. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    12. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    13. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    14. Jarno Talponen, 2013. "Matching distributions: Asset pricing with density shape correction," Papers 1312.4227, arXiv.org, revised Mar 2018.
    15. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    16. Gil-Bazo, Javier, 2005. "Market imperfections, discount factors and stochastic dominance: an empirical analysis with oil-linked derivatives," DEE - Working Papers. Business Economics. WB wb055013, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    17. Detlefsen, Kai & Härdle, Wolfgang Karl & Moro, Rouslan A., 2007. "Empirical pricing kernels and investor preferences," SFB 649 Discussion Papers 2007-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    19. Robert R Bliss & Nikolaos Panigirtzoglou, 2000. "Testing the stability of implied probability density functions," Bank of England working papers 114, Bank of England.
    20. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:181:y:2010:i:1:p:683-708:10.1007/s10479-009-0636-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.