IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/201418.html
   My bibliography  Save this paper

Volatility vs. downside risk: optimally protecting against drawdowns and maintaining portfolio performance

Author

Listed:
  • Diana Barro

    (Department of Economics, University Of Venice C� Foscari)

  • Elio Canestrelli

    (Department of Economics, University Of Venice C� Foscari)

  • Fabio Lanza

    (Department of Economics, University Of Venice C� Foscari)

Abstract

As a consequence of recent market conditions an increasing number of investors are realizing the importance of controlling tail risk to reduce drawdowns thus increasing possibilities of achieving long-term objectives. Recently, so called volatility control strategies and volatility target approaches to investment have gained a lot of interest as strategies able to mitigate tail risk and produce better risk-adjusted returns. Essentially these are rule-based backward looking strategies in which no optimization is considered. In this contribution we focus on the role of volatility in downside risk reduction and, in particular, in tail risk reduction. The first contribution of our paper is to provide a viable way to integrate a target volatility approach, into a multiperiod portfolio optimization model, through the introduction of a local volatility control approach. Our optimized volatility control is contrasted with existing rule-based target volatility strategies, in an out-of sample simulation on real data, to assess the improvement that can be obtained from the optimization process. A second contribution of this work is to study the interaction between volatility control and downside risk control. We show that combining the two tools we can enhance the possibility of achieving the desired performance objectives and, simultaneously, we reduce the cost of hedging. The multiperiod portfolio optimization problem is formulated in a stochastic programming framework that provides the necessary flexibility for dealing with different constraints and multiple sources of risk.

Suggested Citation

  • Diana Barro & Elio Canestrelli & Fabio Lanza, 2014. "Volatility vs. downside risk: optimally protecting against drawdowns and maintaining portfolio performance," Working Papers 2014:18, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2014:18
    as

    Download full text from publisher

    File URL: https://www.unive.it/web/fileadmin/user_upload/dipartimenti/DEC/doc/Pubblicazioni_scientifiche/working_papers/2014/WP_DSE_barro_canestrelli_lanza_18_14.pdf
    File Function: First version, anno
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    2. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    3. Gaivoronski, Alexei A. & Krylov, Sergiy & van der Wijst, Nico, 2005. "Optimal portfolio selection and dynamic benchmark tracking," European Journal of Operational Research, Elsevier, vol. 163(1), pages 115-131, May.
    4. Farinelli, Simone & Tibiletti, Luisa, 2008. "Sharpe thinking in asset ranking with one-sided measures," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1542-1547, March.
    5. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    6. Andrew Ang & Joseph Chen & Yuhang Xing, 2006. "Downside Risk," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1191-1239.
      • Andrew Ang & Joseph Chen & Yuhang Xing, 2005. "Downside risk," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
    7. Wojtek Michalowski & Włodzimierz Ogryczak, 2001. "Extending the MAD portfolio optimization model to incorporate downside risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 185-200, April.
    8. Diana Barro & Elio Canestrelli, 2014. "Downside risk in multiperiod tracking error models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(2), pages 263-283, June.
    9. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    10. Michael A. H. Dempster & Igor V. Evstigneev & Klaus R. Schenk-hoppe, 2007. "Volatility-induced financial growth," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 151-160.
    11. Rudolf, Markus & Wolter, Hans-Jurgen & Zimmermann, Heinz, 1999. "A linear model for tracking error minimization," Journal of Banking & Finance, Elsevier, vol. 23(1), pages 85-103, January.
    12. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    13. Giorgio Consigli & Gaetano Iaquinta & Vittorio Moriggia, 2012. "Path-dependent scenario trees for multistage stochastic programmes in finance," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1265-1281, July.
    14. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    15. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    16. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    17. M. A. H. Dempster & Igor Evstigneev & Klaus Reiner Schenk-Hoppe, 2008. "Financial markets. The joy of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 1-3.
    18. Blitz, D.C. & van Vliet, P., 2007. "The Volatility Effect: Lower Risk without Lower Return," ERIM Report Series Research in Management ERS-2007-044-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Busse, Jeffrey A, 1999. "Volatility Timing in Mutual Funds: Evidence from Daily Returns," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 1009-1041.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Barro & Elio Canestrelli & Giorgio Consigli, 2019. "Volatility versus downside risk: performance protection in dynamic portfolio strategies," Computational Management Science, Springer, vol. 16(3), pages 433-479, July.
    2. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    3. Alan Moreira & Tyler Muir, 2016. "Volatility Managed Portfolios," NBER Working Papers 22208, National Bureau of Economic Research, Inc.
    4. Diana Barro & Elio Canestrelli, 2014. "Downside risk in multiperiod tracking error models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(2), pages 263-283, June.
    5. Alexander, Gordon J. & Baptista, Alexandre M., 2009. "Stress testing by financial intermediaries: Implications for portfolio selection and asset pricing," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 65-92, January.
    6. Amira, Khaled & Taamouti, Abderrahim & Tsafack, Georges, 2011. "What drives international equity correlations? Volatility or market direction?," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 1234-1263, October.
    7. Wu, Chih-Chiang & Chiu, Junmao, 2017. "Economic evaluation of asymmetric and price range information in gold and general financial markets," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 53-68.
    8. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    9. Christoffersen, Peter & Langlois, Hugues, 2013. "The Joint Dynamics of Equity Market Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(5), pages 1371-1404, October.
    10. Chabi-Yo, Fousseni & Ruenzi, Stefan & Weigert, Florian, 2018. "Crash Sensitivity and the Cross Section of Expected Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1059-1100, June.
    11. Huffman, Stephen P. & Moll, Cliff R., 2013. "An examination of the relation between asymmetric risk measures, prior returns and expected daily stock returns," Review of Financial Economics, Elsevier, vol. 22(1), pages 8-19.
    12. Huang, Wei & Liu, Qianqiu & Ghon Rhee, S. & Wu, Feng, 2012. "Extreme downside risk and expected stock returns," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1492-1502.
    13. Štefan Lyócsa & Roman Horváth, 2018. "Stock Market Contagion: a New Approach," Open Economies Review, Springer, vol. 29(3), pages 547-577, July.
    14. Kirt C. Butler & Katsushi Okada, 2008. "Higher-Order Terms in Bivariate Returns to International Stock Market Indices," Multinational Finance Journal, Multinational Finance Journal, vol. 12(1-2), pages 127-155, March-Jun.
    15. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    16. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2017. "Asymmetry in spillover effects: Evidence for international stock index futures markets," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 94-111.
    17. Shi, Yun, 2020. "Timing Idiosyncratic Volatility and Dynamic Asset Allocation," SocArXiv 9kber, Center for Open Science.
    18. Ruenzi, Stefan & Ungeheuer, Michael & Weigert, Florian, 2013. "Extreme Downside Liquidity Risk," Working Papers on Finance 1326, University of St. Gallen, School of Finance, revised Jul 2015.
    19. Kirt Butler & Katsushi Okada, 2009. "The relative contribution of conditional mean and volatility in bivariate returns to international stock market indices," Applied Financial Economics, Taylor & Francis Journals, vol. 19(1), pages 1-15.
    20. López-Espinosa, Germán & Moreno, Antonio & Rubia, Antonio & Valderrama, Laura, 2015. "Systemic risk and asymmetric responses in the financial industry," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 471-485.

    More about this item

    Keywords

    Volatility; tail risk; stochastic programming; risk management.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2014:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sassano Sonia (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.