IDEAS home Printed from https://ideas.repec.org/p/van/wpaper/0512.html
   My bibliography  Save this paper

On Purification of Equilibrium in Bayesian Games and Ex-Post Nash Equilibrium

Author

Listed:
  • Edward Cartwright

    (Department of Economics, Keynes College, University of Kent)

  • Myrna Wooders

    (Department of Economics, Vanderbilt University)

Abstract

Kalai (2002) demonstrates that in semi anonymous Bayesian games with sufficiently many players any Bayesian equilibrium is approximately ex-post Nash. In this paper we demonstrate that the existence of an approximate expost Nash property implies a purification result of the standard sort for the original Bayesian game. We also provide an example showing that the bound we obtain on the distance of a purified approximate equilibrium from an exact equilibrium is tight.

Suggested Citation

  • Edward Cartwright & Myrna Wooders, 2005. "On Purification of Equilibrium in Bayesian Games and Ex-Post Nash Equilibrium," Vanderbilt University Department of Economics Working Papers 0512, Vanderbilt University Department of Economics.
  • Handle: RePEc:van:wpaper:0512
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/VUECON/vu05-w12.pdf
    File Function: First version, 2005
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Green, Jerry R & Laffont, Jean-Jacques, 1987. "Posterior Implementability in a Two-Person Decision Problem," Econometrica, Econometric Society, vol. 55(1), pages 69-94, January.
    2. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    3. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    5. Richard McLean & Andrew Postlewaite, 2002. "Informational Size and Incentive Compatibility," Econometrica, Econometric Society, vol. 70(6), pages 2421-2453, November.
    6. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1997. "On the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Journal of Economic Theory, Elsevier, vol. 76(1), pages 13-46, September.
    7. Mas-Colell, Andreu, 1984. "On a theorem of Schmeidler," Journal of Mathematical Economics, Elsevier, vol. 13(3), pages 201-206, December.
    8. Rui Pascoa, Mario, 1993. "Approximate equilibrium in pure strategies for non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 22(3), pages 223-241.
    9. Ehud Kalai, 2004. "Large Robust Games," Econometrica, Econometric Society, vol. 72(6), pages 1631-1665, November.
    10. Cremer, Jacques & McLean, Richard P, 1985. "Optimal Selling Strategies under Uncertainty for a Discriminating Monopolist When Demands Are Interdependent," Econometrica, Econometric Society, vol. 53(2), pages 345-361, March.
    11. Mario Rui Pascoa, 1998. "Nash equilibrium and the law of large numbers," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. , & , P. & , & ,, 2015. "Strategic uncertainty and the ex-post Nash property in large games," Theoretical Economics, Econometric Society, vol. 10(1), January.
    2. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    3. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    4. Carmona, Guilherme, 2008. "Purification of Bayesian-Nash equilibria in large games with compact type and action spaces," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1302-1311, December.
    5. Arsen Palestini & Ilaria Poggio, 2015. "A Bayesian potential game to illustrate heterogeneity in cost/benefit characteristics," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 62(1), pages 23-39, March.
    6. Deb, Joyee & Kalai, Ehud, 2015. "Stability in large Bayesian games with heterogeneous players," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1041-1055.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    2. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    3. Yang, Jian, 2022. "A Bayesian nonatomic game and its applicability to finite-player situations," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    4. Wooders, M. & Selten, R. & Cartwright, E., 2001. "Some First Results for Noncooperative Pregames : Social Conformity and Equilibrium in Pure Strategies," The Warwick Economics Research Paper Series (TWERPS) 589, University of Warwick, Department of Economics.
    5. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    6. Wooders, Myrna & Edward Cartwright & Selten, Reinhard, 2002. "Social Conformity And Equilibrium In Pure Strategies In Games With Many Players," The Warwick Economics Research Paper Series (TWERPS) 636, University of Warwick, Department of Economics.
    7. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    8. Deb, Joyee & Kalai, Ehud, 2015. "Stability in large Bayesian games with heterogeneous players," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1041-1055.
    9. Ehud Kalai, 2005. "Partially-Specified Large Games," Discussion Papers 1403, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    10. Al-Najjar, Nabil I., 2008. "Large games and the law of large numbers," Games and Economic Behavior, Elsevier, vol. 64(1), pages 1-34, September.
    11. Guilherme Carmona, 2004. "On the existence of pure strategy nash equilibria in large games," Nova SBE Working Paper Series wp465, Universidade Nova de Lisboa, Nova School of Business and Economics.
    12. Wang, Yan & Yang, Jian & Qi, Lian, 2017. "A game-theoretic model for the role of reputation feedback systems in peer-to-peer commerce," International Journal of Production Economics, Elsevier, vol. 191(C), pages 178-193.
    13. Yang, Jian, 2011. "Asymptotic interpretations for equilibria of nonatomic games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 491-499.
    14. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    15. Chen, Enxian & Qiao, Lei & Sun, Xiang & Sun, Yeneng, 2022. "Robust perfect equilibrium in large games," Journal of Economic Theory, Elsevier, vol. 201(C).
    16. Wooders, Myrna & Cartwright, Edward & Selten, Reinhard, 2006. "Behavioral conformity in games with many players," Games and Economic Behavior, Elsevier, vol. 57(2), pages 347-360, November.
    17. , & , P. & , & ,, 2015. "Strategic uncertainty and the ex-post Nash property in large games," Theoretical Economics, Econometric Society, vol. 10(1), January.
    18. Kalai, Ehud & Shmaya, Eran, 2018. "Large strategic dynamic interactions," Journal of Economic Theory, Elsevier, vol. 178(C), pages 59-81.
    19. Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
    20. Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.

    More about this item

    Keywords

    Ex-post Nash equilibrium; noncooperative games; incomplete information; purification; epsilon ex-post Nash equilibrium;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:van:wpaper:0512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: http://www.vanderbilt.edu/econ/wparchive/index.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.