IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v7y2009i4p341-372.html
   My bibliography  Save this article

Range-Based Covariance Estimation Using High-Frequency Data: The Realized Co-Range -super-

Author

Listed:
  • Karim Bannouh
  • Dick van Dijk
  • Martin Martens

Abstract

We introduce the realized co-range, a novel estimator of the daily covariance between asset returns based on intraday high--low price ranges. In an ideal world, the co-range is five times more efficient than the realized covariance, which uses cross-products of intraday returns, when sampling at the same frequency. In Monte Carlo simulations, we find that for plausible levels of bid--ask bounce, infrequent trading and nonsynchronous trading, the realized co-range still improves upon the realized covariance. In a volatility timing strategy for S&P500, bond and gold futures, we find that the co-range estimates are less noisy, which results in lower transaction costs and higher Sharpe ratios. Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org., Oxford University Press.

Suggested Citation

  • Karim Bannouh & Dick van Dijk & Martin Martens, 2009. "Range-Based Covariance Estimation Using High-Frequency Data: The Realized Co-Range -super-," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 341-372, Fall.
  • Handle: RePEc:oup:jfinec:v:7:y:2009:i:4:p:341-372
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbp012
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Caporin & Angelo Ranaldo & Gabriel G. Velo, 2015. "Precious metals under the microscope: a high-frequency analysis," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 743-759, May.
    2. Wu, Chih-Chiang & Liang, Shin-Shun, 2011. "The economic value of range-based covariance between stock and bond returns with dynamic copulas," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 711-727, September.
    3. Harry-Paul Vander Elst & David Veredas, 2014. "Disentangled Jump-Robust Realized Covariances and Correlations with Non-Synchronous Prices," Working Papers ECARES ECARES 2014-35, ULB -- Universite Libre de Bruxelles.
    4. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    5. Liao, Yin & Anderson, Heather M., 2019. "Testing for cojumps in high-frequency financial data: An approach based on first-high-low-last prices," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 252-274.
    6. Jan Novotný & Giovanni Urga, 2018. "Testing for Co-jumps in Financial Markets," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 118-128.
    7. repec:cte:wsrepe:es142416 is not listed on IDEAS
    8. Neda Todorova, 2012. "Volatility estimators based on daily price ranges versus the realized range," Applied Financial Economics, Taylor & Francis Journals, vol. 22(3), pages 215-229, February.
    9. I‐Ming Jiang & Jui‐Cheng Hung & Chuan‐San Wang, 2014. "Volatility Forecasts: Do Volatility Estimators and Evaluation Methods Matter?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(11), pages 1077-1094, November.
    10. Wenjing Wang & Minjing Tao, 2020. "Forecasting Realized Volatility Matrix With Copula-Based Models," Papers 2002.08849, arXiv.org.
    11. V. Popov, 2016. "Correlation estimation using components of Japanese candlesticks," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1615-1630, October.
    12. Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2013. "Stylized Facts and Dynamic Modeling of High-frequency Data on Precious Metals," Working Papers on Finance 1318, University of St. Gallen, School of Finance.
    13. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
    14. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    15. Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:7:y:2009:i:4:p:341-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.