IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/761.html
   My bibliography  Save this paper

Stochastic evolution of rules for playing normal form games

Author

Abstract

The evolution of boundedly rational rules for playing normal form games is studied within stationary environments of stochastically changing games. Rules are viewed as algorithms prescribing strategies for the different normal form games that arise. It is shown that many of the folk results of evolutionary game theory typically obtained with a fixed game and fixed strategies carry over to the present case. The results are also related to recent experiments on rules and games.

Suggested Citation

  • Fabrizio Germano, 2004. "Stochastic evolution of rules for playing normal form games," Economics Working Papers 761, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:761
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/761.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Cabrales, Antonio & Sobel, Joel, 1992. "On the limit points of discrete selection dynamics," Journal of Economic Theory, Elsevier, vol. 57(2), pages 407-419, August.
    4. Samuelson, Larry, 2001. "Analogies, Adaptation, and Anomalies," Journal of Economic Theory, Elsevier, vol. 97(2), pages 320-366, April.
    5. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    6. LiCalzi Marco, 1995. "Fictitious Play by Cases," Games and Economic Behavior, Elsevier, vol. 11(1), pages 64-89, October.
    7. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. , & ,, 2008. "Contagion through learning," Theoretical Economics, Econometric Society, vol. 3(4), December.
    2. Jakub Steiner & Colin Stewart, 2007. "Learning by Similarity in Coordination Problems," CERGE-EI Working Papers wp324, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    3. Fabrizio Germano, 2007. "Stochastic Evolution of Rules for Playing Finite Normal Form Games," Theory and Decision, Springer, vol. 62(4), pages 311-333, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    2. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    3. Daniele Condorelli & Massimiliano Furlan, 2024. "Deep Learning to Play Games," Papers 2409.15197, arXiv.org.
    4. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    5. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    6. William Sandholm, 2014. "Probabilistic Interpretations of Integrability for Game Dynamics," Dynamic Games and Applications, Springer, vol. 4(1), pages 95-106, March.
    7. Michel Benaim & Mathieu Faure, 2010. "Stochastic Approximation, Cooperative Dynamics and Supermodular Games," Levine's Working Paper Archive 814577000000000437, David K. Levine.
    8. Dai Zusai, 2018. "Evolutionary dynamics in heterogeneous populations: a general framework for an arbitrary type distribution," Papers 1805.04897, arXiv.org, revised May 2019.
    9. Ewerhart, Christian & Valkanova, Kremena, 2020. "Fictitious play in networks," Games and Economic Behavior, Elsevier, vol. 123(C), pages 182-206.
    10. Leslie, David S. & Collins, E.J., 2006. "Generalised weakened fictitious play," Games and Economic Behavior, Elsevier, vol. 56(2), pages 285-298, August.
    11. , & , H. & ,, 2015. "Sampling best response dynamics and deterministic equilibrium selection," Theoretical Economics, Econometric Society, vol. 10(1), January.
    12. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    13. Dai Zusai, 2017. "Nonaggregable evolutionary dynamics under payoff heterogeneity," DETU Working Papers 1702, Department of Economics, Temple University.
    14. Perkins, S. & Leslie, D.S., 2014. "Stochastic fictitious play with continuous action sets," Journal of Economic Theory, Elsevier, vol. 152(C), pages 179-213.
    15. Ulrich Berger, 2004. "Two More Classes of Games with the Fictitious Play Property," Game Theory and Information 0408003, University Library of Munich, Germany.
    16. Reinoud Joosten & Berend Roorda, 2008. "Generalized projection dynamics in evolutionary game theory," Papers on Economics and Evolution 2008-11, Philipps University Marburg, Department of Geography.
    17. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    18. Michel Benaïm & Mathieu Faure, 2013. "Consistency of Vanishingly Smooth Fictitious Play," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 437-450, August.
    19. Williams, Noah, 2022. "Learning and equilibrium transitions: Stochastic stability in discounted stochastic fictitious play," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    20. Beggs Alan, 2009. "Learning in Bayesian Games with Binary Actions," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 9(1), pages 1-30, September.

    More about this item

    Keywords

    Rules; evolutionary dynamics; stochastic dynamics; bounded rationality; learning; normal form games;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.