IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v84y2016ip1093-1130.html
   My bibliography  Save this article

Berk–Nash Equilibrium: A Framework for Modeling Agents With Misspecified Models

Author

Listed:
  • Ignacio Esponda
  • Demian Pouzo

Abstract

We develop an equilibrium framework that relaxes the standard assumption that people have a correctly specified view of their environment. Each player is characterized by a (possibly misspecified) subjective model, which describes the set of feasible beliefs over payoff‐relevant consequences as a function of actions. We introduce the notion of a Berk–Nash equilibrium: Each player follows a strategy that is optimal given her belief, and her belief is restricted to be the best fit among the set of beliefs she considers possible. The notion of best fit is formalized in terms of minimizing the Kullback–Leibler divergence, which is endogenous and depends on the equilibrium strategy profile. Standard solution concepts such as Nash equilibrium and self‐confirming equilibrium constitute special cases where players have correctly specified models. We provide a learning foundation for Berk–Nash equilibrium by extending and combining results from the statistics literature on misspecified learning and the economics literature on learning in games.

Suggested Citation

  • Ignacio Esponda & Demian Pouzo, 2016. "Berk–Nash Equilibrium: A Framework for Modeling Agents With Misspecified Models," Econometrica, Econometric Society, vol. 84, pages 1093-1130, May.
  • Handle: RePEc:wly:emetrp:v:84:y:2016:i::p:1093-1130
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:84:y:2016:i::p:1093-1130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.