IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v4y2014i1p95-106.html
   My bibliography  Save this article

Probabilistic Interpretations of Integrability for Game Dynamics

Author

Listed:
  • William Sandholm

Abstract

In models of evolution and learning in games, a variety of proofs of convergence rely on the assumption that the players’ choice functions are integrable. This assumption does not have an obvious game-theoretic interpretation. We address this question by introducing probability models defined in terms of piecewise-smooth closed curves through $\mathbb{R}^{n}$ ; these curves describe cycles in the performances of the available actions. We establish that a choice function is integrable if and only if in the probability model induced by each such curve, the rate at which players switch to a randomly drawn action is uncorrelated with a certain binary signal. The binary signal specifies whether the performance of the randomly drawn action is improving or worsening, and can also be interpreted as a signal about the performances of actions other than the one randomly drawn. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • William Sandholm, 2014. "Probabilistic Interpretations of Integrability for Game Dynamics," Dynamic Games and Applications, Springer, vol. 4(1), pages 95-106, March.
  • Handle: RePEc:spr:dyngam:v:4:y:2014:i:1:p:95-106
    DOI: 10.1007/s13235-013-0082-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13235-013-0082-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s13235-013-0082-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Sergiu Hart, 2013. "Adaptive Heuristics," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 11, pages 253-287, World Scientific Publishing Co. Pte. Ltd..
    4. Sergiu Hart & Andreu Mas-Colell, 2013. "A General Class Of Adaptive Strategies," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 3, pages 47-76, World Scientific Publishing Co. Pte. Ltd..
    5. Sandholm, William H., 2009. "Large population potential games," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1710-1725, July.
    6. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    7. Young, H. Peyton, 2004. "Strategic Learning and its Limits," OUP Catalogue, Oxford University Press, number 9780199269181.
    8. Michel BenaÔm & J–rgen W. Weibull, 2003. "Deterministic Approximation of Stochastic Evolution in Games," Econometrica, Econometric Society, vol. 71(3), pages 873-903, May.
    9. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    10. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    11. Sandholm, William H., 2005. "Excess payoff dynamics and other well-behaved evolutionary dynamics," Journal of Economic Theory, Elsevier, vol. 124(2), pages 149-170, October.
    12. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    13. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    2. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    2. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    3. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    4. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    5. Sandholm,W.H., 2002. "Potential dynamics and stable games," Working papers 21, Wisconsin Madison - Social Systems.
    6. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    7. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    8. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    9. Ewerhart, Christian & Valkanova, Kremena, 2020. "Fictitious play in networks," Games and Economic Behavior, Elsevier, vol. 123(C), pages 182-206.
    10. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    11. Sandholm, William H., 2007. "Evolution in Bayesian games II: Stability of purified equilibria," Journal of Economic Theory, Elsevier, vol. 136(1), pages 641-667, September.
    12. Lahkar, Ratul & Sandholm, William H., 2008. "The projection dynamic and the geometry of population games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 565-590, November.
    13. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    14. Lahkar, Ratul & Mukherjee, Sayan & Roy, Souvik, 2022. "Generalized perturbed best response dynamics with a continuum of strategies," Journal of Economic Theory, Elsevier, vol. 200(C).
    15. Dai Zusai, 2018. "Evolutionary dynamics in heterogeneous populations: a general framework for an arbitrary type distribution," Papers 1805.04897, arXiv.org, revised May 2019.
    16. Saeed Hadikhanloo & Rida Laraki & Panayotis Mertikopoulos & Sylvain Sorin, 2022. "Learning in nonatomic games, part Ⅰ: Finite action spaces and population games," Post-Print hal-03767995, HAL.
    17. , & , H. & ,, 2015. "Sampling best response dynamics and deterministic equilibrium selection," Theoretical Economics, Econometric Society, vol. 10(1), January.
    18. Rene Saran & Roberto Serrano, 2012. "Regret Matching with Finite Memory," Dynamic Games and Applications, Springer, vol. 2(1), pages 160-175, March.
    19. Andriy Zapechelnyuk, 2009. "Limit Behavior of No-regret Dynamics," Discussion Papers 21, Kyiv School of Economics.
    20. Dai Zusai, 2017. "Nonaggregable evolutionary dynamics under payoff heterogeneity," DETU Working Papers 1702, Department of Economics, Temple University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:4:y:2014:i:1:p:95-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.