IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1437.html
   My bibliography  Save this paper

Model comparisons in unstable environments

Author

Abstract

The goal of this paper is to develop formal tests to evaluate the relative in-sample per- formance of two competing, misspecified, non-nested models in the presence of possible data instability. Compared to previous approaches to model selection, which are based on measures of global performance, we focus on the local relative performance of the models. We propose three tests that are based on different measures of local performance and that correspond to different null and alternative hypotheses. The empirical application provides insights into the time variation in the performance of a representative DSGE model of the European economy relative to that of VARs.

Suggested Citation

  • Raffaella Giacomini & Barbara Rossi, 2014. "Model comparisons in unstable environments," Economics Working Papers 1437, Department of Economics and Business, Universitat Pompeu Fabra, revised Jan 2015.
  • Handle: RePEc:upf:upfgen:1437
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1437.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wei Biao Wu & Zhibiao Zhao, 2007. "Inference of trends in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 391-410, June.
    2. Ulrich K. Müller, 2011. "Efficient Tests Under a Weak Convergence Assumption," Econometrica, Econometric Society, vol. 79(2), pages 395-435, March.
    3. Rossi, Barbara, 2005. "Optimal Tests For Nested Model Selection With Underlying Parameter Instability," Econometric Theory, Cambridge University Press, vol. 21(5), pages 962-990, October.
    4. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    5. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    6. Wooldridge, Jeffrey M. & White, Halbert, 1988. "Some Invariance Principles and Central Limit Theorems for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 4(2), pages 210-230, August.
    7. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    8. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2005. "Stationarity Tests Under Time-Varying Second Moments," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1112-1129, December.
    9. Graham Elliott & Ulrich K. Muller, 2006. "Efficient Tests for General Persistent Time Variation in Regression Coefficients," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 907-940.
    10. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    11. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. Ulrich K. Müller & Philippe-Emmanuel. Petalas, 2010. "Efficient Estimation of the Parameter Path in Unstable Time Series Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(4), pages 1508-1539.
    14. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    15. Douglas Rivers & Quang Vuong, 2002. "Model selection tests for nonlinear dynamic models," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 1-39, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    2. Rossi, José Luiz Júnior, 2013. "Liquidity and Exchange Rates," Insper Working Papers wpe_325, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    3. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    4. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
    5. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    6. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    9. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    10. Alexandra Horobet & Irina Mnohoghitnei & Emanuela Marinela Luminita Zlatea & Lucian Belascu, 2022. "The Interplay between Digitalization, Education and Financial Development: A European Case Study," JRFM, MDPI, vol. 15(3), pages 1-23, March.
    11. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    12. Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2019. "Forecasting with instabilities: An application to DSGE models with financial frictions," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
    13. Chollete, Loran & Schmeidler, David, 2014. "Extreme Events and the Origin of Central Bank Priors," UiS Working Papers in Economics and Finance 2014/15, University of Stavanger.
    14. Chang Liu & Biqian Zhang & Xuefei Wang & Min Guo, 2022. "Account-level analytic hierarchical mixing modeling for credit risk of Chinese Government financing vehicle portfolios," Empirical Economics, Springer, vol. 62(6), pages 2771-2798, June.
    15. Rossi, José Luiz Júnior, 2014. "The Usefulness of Financial Variables in Predicting Exchange Rate Movements," Insper Working Papers wpe_332, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    16. Raffaella Giacomini, 2014. "Economic theory and forecasting: lessons from the literature," CeMMAP working papers 41/14, Institute for Fiscal Studies.
    17. Leandro M. Magnusson & Sophocles Mavroeidis, 2014. "Identification Using Stability Restrictions," Econometrica, Econometric Society, vol. 82(5), pages 1799-1851, September.
    18. Rossi, Barbara & Gürkaynak, Refet & Kısacıkoğlu, Burçin, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
    19. Weber, Enzo & Zika, Gerd, 2013. "Labour market forecasting : is disaggregation useful?," IAB-Discussion Paper 201314, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    20. William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armand, Alex & Carneiro, Pedro & Locatelli, Andrea & Mihreteab, Selam & Keating, Joseph, 2017. "Do public health interventions crowd out private health investments? Malaria control policies in Eritrea," Labour Economics, Elsevier, vol. 45(C), pages 107-115.
    2. Raffaella Giacomini & Barbara Rossi, 2012. "Model comparisons in unstable environments," CeMMAP working papers 13/12, Institute for Fiscal Studies.
    3. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    4. Elliott, Graham & Müller, Ulrich K., 2014. "Pre and post break parameter inference," Journal of Econometrics, Elsevier, vol. 180(2), pages 141-157.
    5. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    6. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    7. Alessandro Casini, 2018. "Tests for Forecast Instability and Forecast Failure under a Continuous Record Asymptotic Framework," Papers 1803.10883, arXiv.org, revised Dec 2018.
    8. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    9. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    10. Leandro M. Magnusson & Sophocles Mavroeidis, 2014. "Identification Using Stability Restrictions," Econometrica, Econometric Society, vol. 82(5), pages 1799-1851, September.
    11. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    12. Rossi, Barbara & Sekhposyan, Tatevik, 2011. "Understanding models' forecasting performance," Journal of Econometrics, Elsevier, vol. 164(1), pages 158-172, September.
    13. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    14. Yamamoto, Yohei & Tanaka, Shinya, 2015. "Testing for factor loading structural change under common breaks," Journal of Econometrics, Elsevier, vol. 189(1), pages 187-206.
    15. Pierre Perron & Yohei Yamamoto, 2016. "On the Usefulness or Lack Thereof of Optimality Criteria for Structural Change Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(5), pages 782-844, May.
    16. Kuan, Chung-Ming, 1998. "Tests for changes in models with a polynomial trend," Journal of Econometrics, Elsevier, vol. 84(1), pages 75-91, May.
    17. Alaa Abi Morshed & Elena Andreou & Otilia Boldea, 2018. "Structural Break Tests Robust to Regression Misspecification," Econometrics, MDPI, vol. 6(2), pages 1-39, May.
    18. Jang, Tae-Seok, 2012. "Structural estimation of the New-Keynesian Model: a formal test of backward- and forward-looking expectations," MPRA Paper 40278, University Library of Munich, Germany.
    19. Eiji Kurozumi & Yohei Yamamoto, 2015. "Confidence sets for the break date based on optimal tests," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 412-435, October.
    20. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.

    More about this item

    Keywords

    Model Selection Tests; Misspeci.cation; Structural Change; Kullback-Leibler Information Criterion;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.