IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v18y2015i3p412-435.html
   My bibliography  Save this article

Confidence sets for the break date based on optimal tests

Author

Listed:
  • Eiji Kurozumi
  • Yohei Yamamoto

Abstract

In this paper, we propose constructing a confidence set for the date of a one‐time structural change using a point optimal test. Following Elliott and Müller (2007, Journal of Econometrics 141, 1196–1218), we first construct a test for the break date that maximizes the weighted average of the power function. The confidence set is then obtained by inverting the test statistic. We carefully choose the weights and show by Monte Carlo simulations that the confidence set based on our method has a relatively accurate coverage rate, while the length of our confidence set is significantly shorter than the lengths proposed in the literature.

Suggested Citation

  • Eiji Kurozumi & Yohei Yamamoto, 2015. "Confidence sets for the break date based on optimal tests," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 412-435, October.
  • Handle: RePEc:wly:emjrnl:v:18:y:2015:i:3:p:412-435
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ectj.12055
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Otilia Boldea & Alastair Hall & Sanggohn Han, 2012. "Asymptotic Distribution Theory for Break Point Estimators in Models Estimated via 2SLS," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 1-33.
    5. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    6. Graham Elliott & Ulrich K. Muller, 2006. "Efficient Tests for General Persistent Time Variation in Regression Coefficients," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 907-940.
    7. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    8. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
    9. Yohei Yamamoto, 2018. "A modified confidence set for the structural break date in linear regression models," Econometric Reviews, Taylor & Francis Journals, vol. 37(9), pages 974-999, October.
    10. Andrews, Donald W. K. & Lee, Inpyo & Ploberger, Werner, 1996. "Optimal changepoint tests for normal linear regression," Journal of Econometrics, Elsevier, vol. 70(1), pages 9-38, January.
    11. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    12. Seong Yeon Chang & Pierre Perron, 2018. "A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 577-601, July.
    13. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    14. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    15. Perron, Pierre & Yamamoto, Yohei, 2014. "A Note On Estimating And Testing For Multiple Structural Changes In Models With Endogenous Regressors Via 2sls," Econometric Theory, Cambridge University Press, vol. 30(2), pages 491-507, April.
    16. Jushan Bai, 2000. "Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 303-339, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    2. Skrobotov, Anton, 2021. "Structural breaks in cointegration models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 117-141.
    3. KUROZUMI, Eiji & 黒住, 英司, 2017. "Confidence Sets for the Date of a Mean Shift at the End of a Sample," Discussion Papers 2017-06, Graduate School of Economics, Hitotsubashi University.
    4. Yunjong Eo & James Morley, 2015. "Likelihood‐ratio‐based confidence sets for the timing of structural breaks," Quantitative Economics, Econometric Society, vol. 6(2), pages 463-497, July.
    5. Eiji Kurozumi & Anton Skrobotov, 2018. "Confidence Sets for the Break Date in Cointegrating Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 514-535, June.
    6. Harvey, David I. & Leybourne, Stephen J., 2016. "Improving the length of confidence sets for the date of a break in level and trend when the order of integration is unknown," Economics Letters, Elsevier, vol. 145(C), pages 239-245.
    7. Eiji Kurozumi, 2018. "Confidence Sets for the Date of a Structural Change at the End of a Sample," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 850-862, November.
    8. KUROZUMI, Eiji & 黒住, 英司, 2016. "Monitoring Parameter Constancy with Endogenous Regressors," Discussion Papers 2016-01, Graduate School of Economics, Hitotsubashi University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    2. Seong Yeon Chang & Pierre Perron, 2018. "A comparison of alternative methods to construct confidence intervals for the estimate of a break date in linear regression models," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 577-601, July.
    3. Elliott, Graham & Müller, Ulrich K., 2014. "Pre and post break parameter inference," Journal of Econometrics, Elsevier, vol. 180(2), pages 141-157.
    4. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    5. Eiji Kurozumi & Anton Skrobotov, 2018. "Confidence Sets for the Break Date in Cointegrating Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 514-535, June.
    6. Casini, Alessandro & Perron, Pierre, 2022. "Generalized Laplace Inference In Multiple Change-Points Models," Econometric Theory, Cambridge University Press, vol. 38(1), pages 35-65, February.
    7. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    8. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
    9. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    10. Alessandro Casini & Pierre Perron, 2018. "Continuous Record Asymptotics for Change-Points Models," Papers 1803.10881, arXiv.org, revised Nov 2021.
    11. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    12. Casini, Alessandro & Perron, Pierre, 2021. "Continuous record Laplace-based inference about the break date in structural change models," Journal of Econometrics, Elsevier, vol. 224(1), pages 3-21.
    13. Yaein Baek, 2018. "Estimation of a Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised Jun 2020.
    14. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    15. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    16. Zongwu Cai & Seong Yeon Chang, 2018. "A New Test In A Predictive Regression with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201811, University of Kansas, Department of Economics, revised Dec 2018.
    17. Alessandro Casini & Pierre Perron, 2015. "Continuous Record Asymptotics for Structural Change Models," Boston University - Department of Economics - Working Papers Series WP2018-010, Boston University - Department of Economics, revised Nov 2017.
    18. Alessandro Casini & Pierre Perron, "undated". "Generalized Laplace Inference in Multiple Change-Points Models," Boston University - Department of Economics - Working Papers Series WP2018-012, Boston University - Department of Economics.
    19. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    20. Skrobotov, Anton, 2021. "Structural breaks in cointegration models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 117-141.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:18:y:2015:i:3:p:412-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.