IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1346.html
   My bibliography  Save this paper

Calibration of stochastic volatility models via second order approximation: the Heston model case

Author

Listed:

Abstract

Using a suitable Hull and White type formula we develop a methodology to obtain a second order approximation to the implied volatility for very short maturities. Using this approximation we accurately calibrate the full set of parameters of the Heston model. One of the reasons that makes our calibration for short maturities so accurate is that we also take into account the term-structure for large maturities. We may say that calibration is not "memoryless", in the sense that the option's behavior far away from maturity does influence calibration when the option gets close to expiration. Our results provide a way to perform a quick calibration of a closed-form approximation to vanilla options that can then be used to price exotic derivatives. The methodology is simple, accurate, fast, and it requires a minimal computational cost.

Suggested Citation

  • Elisa Alòs & Rafael De Santiago & Josep Vives, 2012. "Calibration of stochastic volatility models via second order approximation: the Heston model case," Economics Working Papers 1346, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:1346
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1346.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780521843584 is not listed on IDEAS
    2. E. Benhamou & E. Gobet & M. Miri, 2010. "Expansion Formulas For European Options In A Local Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 603-634.
    3. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    4. Janek, Agnieszka & Kluge, Tino & Weron, Rafał & Wystup, Uwe, 2010. "FX smile in the Heston model," SFB 649 Discussion Papers 2010-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    7. Fabio Antonelli & Sergio Scarlatti, 2009. "Pricing options under stochastic volatility: a power series approach," Finance and Stochastics, Springer, vol. 13(2), pages 269-303, April.
    8. E. Benhamou & E. Gobet & M. Miri, 2009. "Smart expansion and fast calibration for jump diffusions," Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
    9. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Alòs & Yan Yang, 2014. "A closed-form option pricing approximation formula for a fractional Heston model," Economics Working Papers 1446, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Elisa Alòs, 2012. "A decomposition formula for option prices in the Heston model and applications to option pricing approximation," Finance and Stochastics, Springer, vol. 16(3), pages 403-422, July.
    3. Elisa Alòs, 2009. "A decomposition formula for option prices in the Heston model and applications to option pricing approximation," Economics Working Papers 1188, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    5. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    6. Vicky Henderson & David Hobson, 2001. "Passport options with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 97-118.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Siddiqi, Hammad, 2015. "Anchoring Heuristic in Option Pricing," MPRA Paper 63218, University Library of Munich, Germany.
    9. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    10. Kolkiewicz, A. W. & Tan, K. S., 2006. "Unit-Linked Life Insurance Contracts with Lapse Rates Dependent on Economic Factors," Annals of Actuarial Science, Cambridge University Press, vol. 1(1), pages 49-78, March.
    11. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    12. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    13. Lin, Sha & He, Xin-Jiang, 2021. "A closed-form pricing formula for forward start options under a regime-switching stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Bong-Gyu Jang & Kum-Hwan Roh, 2009. "Valuing qualitative options with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 819-825.
    15. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    16. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    17. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    18. Naoto Kunitomo & Yong-Jin Kim, 2001. "Effects of Stochastic Interest Rates and Volatility on Contingent Claims (Revised Version)," CIRJE F-Series CIRJE-F-129, CIRJE, Faculty of Economics, University of Tokyo.
    19. Chateau, J. -P. & Dufresne, D., 2002. "The stochastic-volatility American put option of banks' credit line commitments:: Valuation and policy implications," International Review of Financial Analysis, Elsevier, vol. 11(2), pages 159-181.
    20. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Forecasting of Options Prices: A Natural Framework for Pooling Historical and Implied Volatiltiy Information," Cambridge Working Papers in Economics 0116, Faculty of Economics, University of Cambridge.

    More about this item

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.